Výsledky vyhľadávania - "СЕРОВОДОРОД"

  1. 1
  2. 2
  3. 3
  4. 4

    Zdroj: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий

    Popis súboru: application/pdf

    Relation: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий : материалы XVI Международной научно-технической конференции; https://elar.usfeu.ru/handle/123456789/13589

  5. 5

    Prispievatelia: A. N. Starikov S. V. Maltsev A. E. Sukhanov a ďalší

    Zdroj: Mining Science and Technology (Russia); Vol 10, No 1 (2025); 25-33 ; Горные науки и технологии; Vol 10, No 1 (2025); 25-33 ; 2500-0632

    Popis súboru: application/pdf

    Relation: https://mst.misis.ru/jour/article/view/633/492; https://mst.misis.ru/jour/article/view/633/493; Кузьминых Е. Г., Левин Л. Ю., Мальцев С. В. Распределение продуктов выхлопных газов техники с двигателями внутреннего сгорания в шахтной вентиляционной сети. Горное эхо. 2023;(2):96–103. https://doi.org/10.7242/echo.2023.2.17; Трушкова Н. А. Исследование газового состава рудничного воздуха для оценки возможности применения рециркуляционного проветривания. Горное эхо. 2019;(3):84–87. https://doi.org/10.7242/echo.2019.3.23; Медведев И. И., Красноштейн А. Е. Аэрология калийных рудников. Свердловск: АН СССР; 1990. С. 119–126.; Баранников В. Г., Красноштейн А. Е., Папулов Л. М. и др. Спелеотерапия в калийном руднике. Екатеринбург: Изд-во УроРАН; 1996. Т. 173.; Puławska A., Manecki M., Flasza M. et al. Origin, distribution, and perspective health benefits of particulate matter in the air of underground salt mine: a case study from Bochnia, Poland. Environmental Geochemistry and Health. 2021;43(9):3533–3556. https://doi.org/10.1007/s10653-021-00832-2; Calin M., Zoran M., Calin M. Radon levels assessment in some Northern Romanian salt mines. Journal of Radioanalytical and Nuclear Chemistry. 2012;293(2):565–572. https://doi.org/10.1007/s10967-012-1686-1; Yao N., Chen J., Feng R. et al. Mechanistic understanding of adsorption of low concentrations of N-nitrosodiethylamine in water by functional MIL-96: experiments and theoretical calculations. Chemical Engineering Journal. 2022;451(3):138761. https://doi.org/10.1016/j.cej.2022.138761; Yang D., Peng X., Peng Q. et al. Probing the interfacial forces and surface interaction mechanisms in petroleum production processes. Engineering. 2022;18:49–61. https://doi.org/10.1016/j.eng.2022.06.012; Суханов А. Е., Бруев Н. А., Газизуллин Р. Р., Стариков А. Н. Исследование сорбционных свойств солей на примере газов, содержащихся в атмосфере калийных рудников. Известия Тульского государственного университета. Известия Тульского государственного университета. Науки о земле. 2023;(1):495–507. https://doi.org/10.46689/2218-5194-2023-1-1-495-507; Кузнецова Ю. Л. Эволюция размера растворимой аэрозольной частицы во влажном воздухе. Вычислительная механика сплошных сред. 2022;15(1):31–44. https://doi.org/10.7242/1999-6691/2022.15.1.3; Баранников В. Г., Черешнев В. А. Гигиеническая оценка процессов самоочищения воздуха в калийном руднике. В: Проблемы безопасности при эксплуатации месторождений полезных ископаемых в зонах градопромышленных агломераций: тезисы докладов Международного симпозиума. М., Пермь; 1995. С. 12–13.; Исаевич А. Г., Стариков А. Н., Мальцев С. В. Совершенствование метода отбора проб воздуха для определения относительной газообильности горючих газов в рудничной атмосфере. Горный информационно-аналитический бюллетень. 2021;(4):143–153. https://doi.org/10.25018/0236_1493_2021_4_0_143; Норина Н. В., Исаевич А. Г. Разработка методов и технических средств нейтрализации серосодержащих соединений в атмосфере калийных рудников. Известия Тульского государственного университета. Науки о земле. 2021;(4):550–557.; Сметанников А. Ф., Филиппов В. Н. Некоторые особенности минерального состава соляных пород и продуктов их переработки (на примере Верхнекамского месторождения солей). Проблемы минералогии, петрографии и металлогении. Научные чтения памяти П. Н. Чирвинского. 2010;13:99–113.; Земсков А. Н., Лискова М. Ю. Особенности формирование компонентного состава газов калийных месторождений. Известия Тульского государственного университета. Науки о земле. 2019;(2):88–97.; Газизуллин Р. Р., Исаевич А. Г., Левин Л. Ю. Численное моделирование процессов выноса вредных примесей рудничной атмосферы при проветривании тупиковых выработок различными способами. Научные исследования и инновации. 2011;5(2):127–129.; Красноштейн А. Е. Физико-химический механизм в процессе адсорбции ядовитых примесей рудничной атмосферы калийными солями. Пермь: Пермский политехнический ин-т.; 1977.; Zhu X., Wen H. Numerical simulation study on the influence of air leakage on oxygen concentration in goafs of fully mechanized caving mining with shallow buried and large mining height. Frontiers in Earth Science. 2023;11:1138925. https://doi.org/10.3389/feart.2023.1138925; https://mst.misis.ru/jour/article/view/633

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Zdroj: Материалы XV Международной научно-технической конференции

    Popis súboru: application/pdf

    Relation: Эффективный ответ на современные вызовы с учетом взаимодействия человека и природы, человека и технологий: социально-экономические и экологические проблемы лесного комплекса : материалы XV Международной научно-технической конференции; https://elar.usfeu.ru/handle/123456789/12856

  15. 15

    Zdroj: Alternative Energy and Ecology (ISJAEE); № 7 (2024); 183-208 ; Альтернативная энергетика и экология (ISJAEE); № 7 (2024); 183-208 ; 1608-8298

    Popis súboru: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2453/1992; Ali S., Alkhatib I., AlHajaj A., Vega L. (2023). How sustainable and profitable are large-scale hydrogen production plants from CH4 and H2S? Journal of Cleaner Production, 428(20), 139475. Doi:10.1016/j.jcle-pro.2023.139475; Bazhenov S., Dobrovolsky Yu., Maksimov A., Zhdaneev O. (2022). Key challenges for the development of the hydrogen industry in the Russian Federation. Sustainable Energy Technologies and Assessments. 54. 102867. 10.1016/j.seta.2022.102867.; Bhandari R., Trudewind C. A., Zap P. Life Cycle Assessment of Hydrogen Production Methods-A Review Contribution to Ely Grid Project.; Bockris, J. (2013, Февраль). The hydrogen economy: Its history. International Journal of Hydrogen Energy, 38(6), 2579-2588. Doi:10.1016/j.ijhydene.2012.12.026; CertifHy. (2024). Retrieved Март 14, 2024, from certifhy.eu: https://www.certifhy.eu/; Cetinkaya E., Dincer I., Naterer G. (2012). Life cycle assessment of various hydrogen production methods. International journal of hydrogen energy, 37(3), 2071-2080. Doi:10.1016/j.ijhydene.2011.10.064; Chan Y., Loy A., Cheah K., Chai S., Ngu L., How B., Lam, S. (2023). Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges and outlook. Chemical Engineering Journal, 458, 141398. Doi: https://doi.org/10.1016/j.cej.2023.141398; Chivers T., Hyne J., Lau C. (1980). The thermal decomposition of hydrogen sulfide over transition metal sulfides. International Journal of Hydrogen Energy, 5(5), 499-506. Doi: https://doi.org/10.1016/0360-3199(80)90056-7; Chupin Evgeniy, Frolov Konstantin, Korzhavin Maxim, Zhdaneev Oleg. (2021). Energy storage systems for drilling rigs. Journal of Petroleum Exploration and Production Technology. 12. 10.1007/s13202-021-01248-5.; Department of Climate Change, Energy, the Environment and Water. (2023). Australia’s Guarantee of Origin Scheme: consultation papers. Retrieved Март 14, 2024, from consult.dcceew.gov.au: https://consult.dcceew.gov.au/aus-guarantee-of-origin-scheme-consulta-tion; Derwent R., Simmonds P., O’Doherty S., Manning A., Collins W., Stevenson D. (2006, Май). Global environmental impacts of the hydrogen economy. International Journal of Nuclear Hydrogen Production and Applications, 1(1), 57-67. doi:10.1504/IJNHPA.2006.009869; E4tech & LBST. (2021). Options for a UK low carbon hydrogen standard. Обзор. Retrieved from https://assets.publishing.service.gov.uk/media/616012f-ce90e071979dfebba/Options_for_a_UK_low_carbon_hydrogen_standard_report.pdf; El-Melih, A. M., Iovine, L., Al Shoaibi A. & Gupta A. K. (2017). Production of hydrogen from hydrogen sulfide in presence of methane. International Journal of Hydrogen Energy, 42(8), 4764-4773. doi: https://doi.org/10.1016/j.ijhydene.2016.11.096; Ernst & Young Limited. (2022). Low-Carbon Hydrogen International Standard Post-Workshop Report. Post-Workshop Repor, Asia-Pacific Economic Cooperation Secretariat, Singapore. Retrieved from https://www.apec.org/docs/default-source/publications/2022/7/low-carbon-hydrogen-international-standard-post-work-shop-report/222_scsc_low-carbon-hydrogen-internation-al-standard.pdf?sfvrsn=b6028b32_2; Galitskaya E. Development of electrolysis technologies for hydrogen production: A case study ofgreen steel manufacturing in the Russian Federation / E. Galitskaya, O. Zhdaneev // Environmental Technology and Innovation. – 2022. – Vol. 27. – P. 102517. – DOI 10.1016/j.eti.2022.102517. – EDN EYZKTG.; Galitskaya E., Khakimov R., Moskvin A., Zhdaneev O. (2023). Towards a new perspective on the efficiency of water electrolysis with anionconducting matrix. International Journal of Hydrogen Energy. 49. 10.1016/j.ijhydene.2023.10.339.; G7 Ministers of Climate, Energy and the Enviroment. (2023). G7 Climate, Energy and Environment Ministers’ Communiqué. Retrieved Март 14, 2024, from meti.go.jp: https://www.meti.go.jp/press/2023/04/20230417004/20230417004-1.pdf; Green Hydrogen Organisation (GH2). (2023). Green Hydrogen Standard. Retrieved Март 14, 2024, from gh2.org: https://gh2.org/sites/default/files/2023-01/GH2_Standard_A5_JAN%202023_1.pdf; Harvey A., Mountain R. (2017). Correlations for the Dielectric Constants of H2S, SO2, SF6. International Journal of Thermophysics, 38(10). doi:10.1007/s10765-017-2279-6; Huang C., T-Raissi A. (2008). Liquid hydrogen production via hydrogen sulfide methane reformation. Journal of Power Sources, 175(1), 464-472. doi:10.1016/j.jpowsour.2007.09.079; International Energy Agency. (2023). Global Hydrogen Review 2023. Обзор. Retrieved Март 14, 2024, from https://iea.blob.core.windows.net/assets/ecdf-c3bb-d212-4a4c-9ff7-6ce5b1e19cef/GlobalHydrogenRe-view2023.pdf; International Energy Agency. (2023). Towards hydrogen definitions based on their emissions intensity. Обзор, G7 2023 Hiroshima Summit. Retrieved from https://iea.blob.core.windows.net/assets/acc7a642-e42b-4972-8893-2f03bf0bfa03/Towardshydrogendefinitions-basedontheiremissionsintensity.pdf; IPHE, Hydrogen Council. (2023). Hydrogen Certification 101. Retrieved 03, 14, 2024, from iphe.net: https://www.iphe.net/_files/ugd/45185a_fe8631bbe2ad-496c9da93711935f7520.pdf; Khakimov R. Hydrogen as a key technology for long-term & seasonal energy storage applications / R. Khakimov, A. Moskvin, O. Zhdaneev // International Journal of Hydrogen Energy. – 2024. – Vol. 68. – P. 374-381. – DOI 10.1016/j.ijhydene.2024.04.066. – EDN IQQFIU; Li Y., Yu X., Guo Q., Dai Z., Yu G., Wang F. (2017). Kinetic study of decomposition of H2S and CH4 for H2 production using detailed mechanism. Energy Procedia, 142, 1065-1070. Doi: https://doi.org/10.1016/j.egypro.2017.12.357; Lim K., Yue Y., Gao X., Bella Zhang T. Hu F., Kawi S. (2023). Sustainable Hydrogen and Ammonia Technologies with Nonthermal Plasma Catalysis: Mechanistic Insights and Technoeconomic Analysis. ACS Sustainable Chemistry & Engineering, 11(13), 4903-4933. Doi: https://doi.org/10.1021/acssuschemeng.2c06515; Liu W., Wan Y., Xiong Y., Gao P. (2021). Green Hydrogen Standard in China: Standard and Evaluation of Low-Carbon Hydrogen, Clean Hydrogen, and Renewable Hydrogen. In Y. Li, H. Phoumin, S. Kimura, S. Kimura (Ed.). Hydrogen Sourced from Renewables and Clean Energy: A Feasibility Study of Achieving Large-scale Demonstration (pp. 211-24). Jakarta: ERIA Research Project Report. Retrieved from https://www.eria.org/uploads/media/Research-Project-Report/RPR-2021-19/15_Chapter-9-Green-Hydrogen-Standard-in-China_Standard-and-Evaluation-of-Low-Carbon-Hydro-gen,-Clean-Hydrogen,-and-Renewable-Hydro-gen.pdf; Martínez-Salazar A., Melo-Banda J., Coronel-García M., García-Vite P., Martínez-Salazar I., Domínguez-Esquivel J. (2019). Technoeconomic analysis of hydrogen production via hydrogen sulfide methane reformation. International Journal of Hydrogen Energy, 44(24), 12296-12302. Doi: https://doi.org/10.1016/j.ijhydene.2018.11.023; Martínez-Salazar A., Melo-Banda J., Reyes de la Torre A., Salazar-Cerda Y., Coronel-García M., Portales Martínez B., Silva Rodrigo R. (2015). Hydrogen production by methane reforming with H2S using Mo,Cr/ ZrO2–SBA15 and Mo,Cr/ZrO2–La2O3 catalysts. International Journal of Hydrogen Energy, 40(48), 17272-17283. Doi: https://doi.org/10.1016/j.ijhydene.2015.09.154; Ministry of Power, India. (2023). G20 Energy Ministers Adopt Ambitious and Forward-looking Outcome Document and Chair’s Summary. Retrieved Март 14, 2024, from pib.gov.in: https://pib.gov.in/PressRelea-seIframePage.aspx?PRID=1941796; Nagashima Ohno & Tsunematsu. (2023). The Japanese Basic Hydrogen Strategy. Retrieved Март 14, 2024, from noandt.com: https://www.noandt.com/wp-content/uploads/2023/06/japan_no40.pdf; Palma V., Cortese M., Renda S., Ruocco C., Martino M., Meloni E. (2020). A Review about the Recent Advances in Selected NonThermal Plasma Assisted Solid-Gas Phase Chemical Processes. Nanomaterials, 10(8), 1596. Doi: https://doi.org/10.3390/nano10081596; Prinzhofer A., Cisse C., Diallo A. (2018, Октябрь). Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43(42), 19315-19326. doi:10.1016/j.ijhydene.2018.08.193; Spatolisano E., De Guido G., Pellegrini L., Calemma V., de Angelis A., Nali M. (2022). Hydrogen sulphide to hydrogen via H2S methane reformation: Thermodynamics and process scheme assessment. International Journal of Hydrogen Energy, 47(35), 15612-15623. Doi: https://doi.org/10.1016/j.ijhydene.2022.03.090; Startsev A. N. (2020). The crucial role of catalysts in the reaction of low temperature decomposition of hydrogen sulfide: Non-equilibrium thermodynamics of the irreversible process in an open system. 497, 11240. Doi: https://doi.org/10.1016/j.mcat.2020.111240; Svirchuk Y. S., Golikov A. N. (2016, Декабрь). Three-Phase Zvezda-Type Plasmatrons. IEEE Transactions on Plasma Science, 44(12), 3042-3047. doi:10.1109/TPS.2016.2571746; THE EUROPEAN COMMISSION. (2020). COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL,THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS A hydrogen strategy for a climate-neutral Europe. Retrieved Март 14, 2024, from eur-lex.europa.eu: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX-%3A52020DC0301; THE EUROPEAN COMMISSION. (2023). COMMISSION DELEGATED REGULATION (EU) 2023/1184. Retrieved Март 14, 2024, from eur-lex.europa.eu: https://eur-lex.europa.eu/legal-content/EN/TX-T/?uri=CELEX%3A32023R1184&qid=1704969010792; THE EUROPEAN COMMISSION. (2023). COMMISSION DELEGATED REGULATION (EU) 2023/1185. Retrieved Март 14, 2024, from eur-lex.europa.eu: https://eur-lex.europa.eu/legal-content/EN/TX-T/?uri=CELEX%3A32023R1185; The UK’s Department for Energy Security & Net Zero. (2023). UK Low Carbon Hydrogen Standard. Стандарт, London. Retrieved from https://assets.publish-ing.service.gov.uk/media/6584407fed3c3400133bfd47/uk-low-carbon-hydrogen-standard-v3-december-2023.pdf; The United States Department of State and the United States Executive Office of the President. (2021). THE LONG-TERM STRATEGY OF THE UNITED STATES. Retrieved Март 14, 204, from whitehouse. gov: https://www.whitehouse.gov/wp-content/up-loads/2021/10/us-long-term-strategy.pdf; The US Department of Energy. (2023). U. S. Department of Energy Clean Hydrogen Production Standard (CHPS) Guidance. Retrieved Март 14, 2024, from hydrogen.energy.gov: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/clean-hydro-gen-production-standard-guidance.pdf; TÜV SÜD Industrie Service. (2021). ÜV SÜD Standard CMS 70 Production of green hydrogen (Green Hydrogen). Retrieved Март 14, 2024, from tuvsud.com: https://www.tuvsud.com/en/-/media/global/pdf-files/brochures-and-infosheets/tuvsud-cms70-standard-green-hydrogen-certification.pdf; Yang L., Wang S., Zhang Z., Lin K., Zheng M. (2023, Июнь 26). Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality. Sustainability, 15(13), 10118. doi:10.3390/su151310118; Zhdaneev O. V. Technological and institutional priorities of the oil and gas complex of the Russian Federation in the term of the world energy transition / O. V. Zhdaneev, K. N. Frolov // International Journal of Hydrogen Energy. – 2024. – Vol. 58. – P. 1418-1428. – DOI:10.1016/j.ijhydene.2024.01.285. – EDN PLLMKU.; Zhe Li, Hailong Du, Hui Xu, Yan Xiao, Lunhui Lu, Jinsong Guo, Yves Prairie, Sara Mercier-Blais, The carbon footprint of largeand mid-scale hydropower in China: Synthesis from five China’s largest hydroproject, Journal of Environmental Management, Volume 250, 2019.; Zgonnik V. (2020, Апрель). The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203, 103140. Doi:10.1016/j.earscirev.2020.103140; Аксютин О., Ишков А., Романов К., Тетеревлев Р. (Март 2021 г.). Роль российского природного газа в развитии водородной энергетики. Энергетическая политика. Получено из https://energypolicy.ru/o-aksyutin-a-ishkov-k-romanov-r-teterevlev-rol-rossijskogo-prirodnogo-gaza-v-razvitii-vodorodnoj-energetiki/gaz/2021/12/25/; Бахтина А. (2023). Открытие месторождения во Франции снизило скептицизм в отношении белого водорода. Получено 20 Июнь 2024 г. из Нефтегаз: https://neftegaz.ru/news/Geological-exploration/800617-otkrytie-mestorozhdeniya-vo-frantsii-snizilo-skeptitsizm-v-otnoshenii-belogo-vodoroda/; Бондур В. Г., Мохов И. И., Макоско А. А. (2022). Метан и климатические изменения: научные проблемы и технологические аспекты (изд. 1-е). (В. Г. Бондур, Ред.) Москва, Россия: Российская академия наук. Doi: 978-5-907036-54-3; Ишков А., Романов К., Колошкин Е., Удалов Д., Богдан И., Лугвищук Д., Михайлов А. (Апрель 2024 г.). Нормативное регулирование оценки углеродного следа при производстве водорода. Энергетическая политика, 195(4), 54-77. Doi:10.46920/2409-5516_2024_4195_54; Колшаков В. В., Ребров С. Г., Голиков А. Н., Федоров И. А. (2021). Ресурсные характеристики плазмотрона переменного тока «Звезда». Физика плазмы и плазменные методы (4), 32-39. Doi:10.51368/1996-0948-2021-4-32-39; Максимов А. Л., Ишков А. Г., Пименов А. А., Романов К. В., Михайлов А. М., Колошкин Е. А. (Февраль 2024 г.). Физико-химические аспекты и углеродный след получения водорода из воды и углеводородов. Записки горного института, 265, 87-94.; Нефтегаз 2025. (2024). Получено 20 Июнь 2024 г., из https://www.neftegaz-expo.ru/ru/articles/neft-rossii/; Савитенко М. А., Рыбаков Б. А. (Март 2021 г.). Применение водорода в энергетике: вопросы экологии. Турбины и Дизели, 94(1), 10-20.; Старцев, А. Н. (2017). Сероводород как источник получения водорода. Известия Академии наук. Серия химическая (8). Retrieved from http://start-sev-an.ru/wp-content/uploads/%D0%98%D0%B7%D0%B2%D0%90%D0%9D-17-%D0%A1%D1%82%D0%B0%D1%80%D1%86%D0%B5%D0%B2.pdf; Сывороткин В. (2013). Озонная методика изучения водородной дегазации Земли. Электронное научное издание Альманах Пространство и Время. – Т. 4. – Вып. 1.; Молчанов, В. И. (1981). Генерация водорода в литогенезе. Новосибирск: Наука.; Ehhalt D. H., Rohrer F. The tropospheric cycle of H2: A critical review // Tellus. 2009.; https://www.isjaee.com/jour/article/view/2453

  16. 16

    Zdroj: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 4 (2024); 18-25 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 4 (2024); 18-25 ; 2713-265X ; 2713-2927

    Popis súboru: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2260/1017; https://www.sibjcem.ru/jour/article/downloadSuppFile/2260/2340; https://www.sibjcem.ru/jour/article/downloadSuppFile/2260/2341; https://www.sibjcem.ru/jour/article/downloadSuppFile/2260/2342; https://www.sibjcem.ru/jour/article/downloadSuppFile/2260/2343; Vaduganathan M., Mensah G.A., Turco J.V., Fuster V., Roth G.A. The global burden of cardiovascular diseases and risk: A compass for future health. J. Am. Coll. Cardiol. 2022;80(25):2361–2371. DOI:10.1016/j.jacc.2022.11.005.; Li X., Zhai Y., Zhao J., He H., Li Y., Liu Y. et al. Impact of metabolic syndrome and it’s components on prognosis in patients with cardiovascular diseases: A meta-analysis. Front. Cardiovasc. Med. 2021;8:704145. DOI:10.3389/fcvm.2021.704145.; Hillock-Watling C., Gotlieb A.I. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall. Cardiovasc. Pathol. 2022;61:107459. DOI:10.1016/j.carpath.2022.107459.; Bragina A., Rodionova Y., Druzhinina N., Suvorov A., Osadchiy K., Ishina T. et al. Relationship between perivascular adipose tissue and cardiovascular risk factors: A systematic review and meta-analysis. Metab. Syndr. Relat. Disord. 2024;22(1):1–14. DOI:10.1089/met.2023.0097.; Chang L., Garcia-Barrio M.T., Chen Y.E. Perivascular adipose tissue regulates vascular function by targeting vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2020;40(5):1094–1109. DOI:10.1161/ATVBAHA.120.312464.; Adachi Y., Ueda K., Takimoto E. Perivascular adipose tissue in vascular pathologies-a novel therapeutic target for atherosclerotic disease? Front. Cardiovasc. Med. 2023;10:1151717. DOI:10.3389/fcvm.2023.1151717.; Golas S., Berenyiova A., Majzunova M., Drobna M., Tuorkey M.J., Cacanyiova S. The vasoactive effect of perivascular adipose tissue and hydrogen sulfide in thoracic aortas of normotensive and spontaneously hypertensive rats. Biomolecules. 2022;12(3):457. DOI:10.3390/biom12030457.; Costa R.M., Neves K.B., Tostes R.C., Lobato N.S. Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity. Front Physiol. 2018;9:253. DOI:10.3389/fphys.2018.00253.; Stanek A., Brożyna-Tkaczyk K., Myśliński W. The role of obesity-induced perivascular adipose tissue (PVAT) dysfunction in vascular homeostasis. Nutrients. 2021;13(11):3843. DOI:10.3390/nu13113843.; Ahmed A., Bibi A., Valoti M., Fusi F. Perivascular adipose tissue and vascular smooth muscle tone: Friends or foes? Cells. 2023;12(8):1196. DOI:10.3390/cells12081196.; Man A.W.C., Zhou Y., Xia N., Li H. Perivascular adipose tissue oxidative stress in obesity. Antioxidants (Basel). 2023;12(8):1595. DOI:10.3390/ antiox12081595.; Ramirez J.G., O’Malley E.J., Ho W.S.V. Pro-contractile effects of perivascular fat in health and disease. Br. J. Pharmacol. 2017;174(20):3482– 3495. DOI:10.1111/bph.13767.; Haj-Yasein N.N., Berg O., Jernerén F., Refsum H., Nebb H.I., Dalen K.T. Cysteine deprivation prevents induction of peroxisome proliferator-activated receptor gamma-2 and adipose differentiation of 3T3-L1 cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862(6):623–635. DOI:10.1016/j.bbalip.2017.02.009.; Zaborska K.E., Wareing M., Edwards G., Austin C. Loss of anti-contractile effect of perivascular adipose tissue in offspring of obese rats. Int. J. Obes. (Lond.). 2016;40(8):1205–1214. DOI:10.1038/ijo.2016.62.; Farias-Itao D.S., Pasqualucci C.A., de Andrade R.A., da Silva L.F.F., Yahagi-Estevam M., Lage S.H.G. et al. Macrophage polarization in the perivascular fat was associated with coronary atherosclerosis. J. Am. Heart. Assoc. 2022;11(6):e023274. DOI:10.1161/JAHA.121.023274.; Cheng C.K., Ding H., Jiang M., Yin H., Gollasch M., Huang Y. Perivascular adipose tissue: Fine-tuner of vascular redox status and inflammation. Redox Biol. 2023;62:102683. DOI:10.1016/j.redox.2023.102683.; Kumar R.K., Jin Y., Watts S.W., Rockwell C.E. Naïve, Regulatory, activated, and memory immune cells co-exist in PVATs that are comparable in density to non-PVAT fats in health. Front. Physiol. 2020;11:58. DOI:10.3389/fphys.2020.00058.; Chen H.H., Li H.F., Tseng T.L., Lin H. Perivascular adipose tissue and adipocyte-derived exosomal miRNAs maintain vascular homeostasis. Heliyon. 2023;9(12):e22607. DOI:10.1016/j.heliyon.2023.e22607.; Li X., Ballantyne L.L., Yu Y., Funk C.D. Perivascular adipose tissue-derived extracellular vesicle miR-221-3p mediates vascular remodeling. FASEB J. 2019;33(11):12704–12722. DOI:10.1096/fj.201901548R.; Balbino-Silva C.S., Couto G.K., Lino C.A., de Oliveira-Silva T., Lunardon G., Huang Z.P. et al. miRNA-22 is involved in the aortic reactivity in physiological conditions and mediates obesity-induced perivascular adipose tissue dysfunction. Life Sci. 2023;316:121416. DOI:10.1016/j.lfs.2023.121416.; Sun X., Lin J., Zhang Y., Kang S., Belkin N., Wara A.K. et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ. Res. 2016;118(5):810–821. DOI:10.1161/CIRCRESAHA.115.308166.; Nosalski R., Siedlinski M., Denby L., McGinnigle E., Nowak M., Cat A.N.D. et al. T-cell-derived miRNA-214 mediates perivascular fibrosis in hypertension. Circ. Res. 2020;126(8):988–1003. DOI:10.1161/CIRCRESAHA.119.315428.; Essandoh K., Li Y., Huo J., Fan G.C. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock. 2016;46(2):122–131. DOI:10.1097/SHK.0000000000000604.; Runtsch M.C., Nelson M.C., Lee S.H., Voth W., Alexander M., Hu R. et al. Anti-inflammatory microRNA-146a protects mice from diet-induced metabolic disease. PLoS Genet. 2019;15(2):e1007970. DOI:10.1371/journal.pgen.1007970.; Soci U.P.R., Cavalcante B.R.R., Improta-Caria A.C., Roever L. The epigenetic role of MiRNAs in endocrine crosstalk between the cardiovascular system and adipose tissue: A bidirectional view. Front. Cell Dev. Biol. 2022;10:910884. DOI:10.3389/fcell.2022.910884.; Hendriks K.D., Maassen H., van Dijk P.R., Henning R.H., van Goor H., Hillebrands J.L. Gasotransmitters in health and disease: a mitochondria-centered view. Curr. Opin. Pharmacol. 2019;45:87–93. DOI:10.1016/j.coph.2019.07.001.; Comas F., Moreno-Navarrete J.M. The impact of H2 S on obesity-associated metabolic disturbances. Antioxidants (Basel). 2021;10(5):633. DOI:10.3390/antiox10050633.; Zhang Y.X., Jing M.R., Cai C.B., Zhu S.G., Zhang C.J., Wang Q.M. et al. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif. 2023;56(3):e13374. DOI:10.1111/cpr.13374.; Yakovlev A.V., Kurmasheva E.D., Giniatullin R., Khalilov I., Sitdikova G.F. Hydrogen sulfide inhibits giant depolarizing potentials and abolishes epileptiform activity of neonatal rat hippocampal slices. Neuroscience. 2017;340:153–165. DOI:10.1016/j.neuroscience.2016.10.051.; Panthi S., Manandhar S., Gautam K. Hydrogen sulfide, nitric oxide, and neurodegenerative disorders. Transl. Neurodegener. 2018;7:3. DOI:10.1186/s40035-018-0108-x.; Bełtowski J., Wiórkowski K. Role of hydrogen sulfide and polysulfides in the regulation of lipolysis in the adipose tissue: Possible implications for the pathogenesis of metabolic syndrome. Int. J. Mol. Sci. 2022;23(3):1346. DOI:10.3390/ijms23031346.; Hine C., Ponti A.K., Cáliz-Molina M.Á., Martín-Montalvo A. H2 S serves as the immunoregulatory essence of apoptotic cell death. Cell Metab. 2024;36(1):3–5. DOI:10.1016/j.cmet.2023.12.006.; Testai L., Citi V., Martelli A., Brogi S., Calderone V. Role of hydrogen sul fide in cardiovascular ageing. Pharmacol. Res. 2020;160:105125. DOI:10.1016/j.phrs.2020.105125.; Filipovic M.R., Zivanovic J., Alvarez B., Banerjee R. Chemical biology of H2 S signaling through persulfidation. Chem. Rev. 2018;118(3):1253– 1337. DOI:10.1021/acs.chemrev.7b00205.; Cirino G., Szabo C., Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol. Rev. 2023;103(1):31–276. DOI:10.1152/physrev.00028.2021.; Kowalczyk-Bołtuć J., Wiórkowski K., Bełtowski J. Effect of exogenous hydrogen sulfide and polysulfide donors on insulin sensitivity of the adipose tissue. Biomolecules. 2022;12(5):646. DOI:10.3390/biom12050646.; Tian Z., Deng N.H., Zhou Z.X., Ren Z., Xiong W.H., Jiang Z.S. The role of adipose tissue-derived hydrogen sulfide in inhibiting atherosclerosis. Nitric Oxide. 2022;127:18–25. DOI:10.1016/j.niox.2022.07.001.; Ding Y., Wang H., Geng B., Xu G. Sulfhydration of perilipin 1 is involved in the inhibitory effects of cystathionine gamma lyase / hydrogen sulfide on adipocyte lipolysis. Biochem. Biophys. Res. Commun. 2020;521(3):786–790. DOI:10.1016/j.bbrc.2019.10.192.; Lv B., Chen S., Tang C., Jin H., Du J., Huang Y. Hydrogen sulfide and vascular regulation – An update. J. Adv. Res. 2020;27:85–97. DOI:10.1016/j.jare.2020.05.007.; Cacanyiova S., Majzunova M., Golas S., Berenyiova A. The role of perivascular adipose tissue and endogenous hydrogen sulfide in vasoactive responses of isolated mesenteric arteries in normotensive and spontaneously hypertensive rats. J. Physiol. Pharmacol. 2019;70(2). DOI:10.26402/jpp.2019.2.13.; Bełtowski J., Guranowski A., Jamroz-Wiśniewska A., Wolski A., Hałas K. Hydrogen-sulfide-mediated vasodilatory effect of nucleoside 5’-monophosphorothioates in perivascular adipose tissue. Can. J. Physiol. Pharmacol. 2015;93(7):585–595. DOI:10.1139/cjpp-2014-0543.; Revenko O., Pavlovskiy Y., Savytska M., Yashchenko A., Kovalyshyn V., Chelpanova I. et al. Hydrogen sulfide prevents mesenteric adipose tissue damage, endothelial dysfunction, and redox imbalance from high fructose diet-induced injury in aged rats. Front. Pharmacol. 2021;12:693100. DOI:10.3389/fphar.2021.693100.; Candela J., Wang R., White C. Microvascular endothelial dysfunction in obesity is driven by macrophage-dependent hydrogen sulfide depletion. Arterioscler. Thromb. Vasc. Biol. 2017;37(5):889–899. DOI:10.1161/ATVBAHA.117.309138.; Kumar A., Bhatia M. Role of hydrogen sulfide, substance P and adhesion molecules in acute pancreatitis. Int. J. Mol. Sci. 2021;22(22):12136. DOI:10.3390/ijms222212136.; Tian D., Teng X., Jin S., Chen Y., Xue H., Xiao L. et al. Endogenous hydrogen sulfide improves vascular remodeling through PPARδ/SOCS3 signaling. J. Adv. Res. 2020;27:115–125. DOI:10.1016/j.jare.2020.06.005.; Zhu J., Yang G. H2 S signaling and extracellular matrix remodeling in cardiovascular diseases: A tale of tense relationship. Nitric Oxide. 2021;116:14–26. DOI:10.1016/j.niox.2021.08.004.; Yue L.M., Gao Y.M., Han B.H. Evaluation on the effect of hydrogen sulfide on the NLRP3 signaling pathway and its involvement in the pathogenesis of atherosclerosis. J. Cell Biochem. 2019;120(1):481–492. DOI:10.1002/jcb.27404.; Pan Z., Wang J., Xu M., Chen S., Li X., Sun A. et al. Hydrogen sulfide protects against high glucose induced lipid metabolic disturbances in 3T3 L1 adipocytes via the AMPK signaling pathway. Mol. Med. Rep. 2019;20(5):4119–4124. DOI:10.3892/mmr.2019.10685.; Gomez C.B., de la Cruz S.H., Medina-Terol G.J., Beltran-Ornelas J.H., Sánchez-López A., Silva-Velasco D.L. et al. Chronic administration of NaHS and L-Cysteine restores cardiovascular changes induced by highfat diet in rats. Eur. J. Pharmacol. 2019;863:172707. DOI:10.1016/j.ejphar.2019.172707.; Tong Y., Zuo Z., Li X., Li M., Wang Z., Guo X. et al. Protective role of perivascular adipose tissue in the cardiovascular system. Front. Endocrinol. (Lausanne). 2023;14:1296778. DOI:10.3389/fendo.2023.1296778.; https://www.sibjcem.ru/jour/article/view/2260

  17. 17
  18. 18
  19. 19
  20. 20