Výsledky vyhľadávania - "ПРОГНОСТИЧЕСКИЕ ФАКТОРЫ"
-
1
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Almanac of Clinical Medicine; Vol 53, No 4 (2025); 194-205 ; Альманах клинической медицины; Vol 53, No 4 (2025); 194-205 ; 2587-9294 ; 2072-0505
Predmety: ulcerative colitis, pseudomembranous colitis, ischemic colitis, conservative treatment, prognostic factors, язвенный колит, псевдомембранозный колит, ишемический колит, консервативное лечение, прогностические факторы
Popis súboru: application/pdf
Relation: https://almclinmed.ru/jour/article/view/17519/1756; https://almclinmed.ru/jour/article/downloadSuppFile/17519/160589; https://almclinmed.ru/jour/article/downloadSuppFile/17519/160736; https://almclinmed.ru/jour/article/downloadSuppFile/17519/160737; https://almclinmed.ru/jour/article/downloadSuppFile/17519/160738; https://almclinmed.ru/jour/article/downloadSuppFile/17519/160739; https://almclinmed.ru/jour/article/view/17519
-
2
Autori: a ďalší
Zdroj: Siberian journal of oncology; Том 24, № 1 (2025); 49-58 ; Сибирский онкологический журнал; Том 24, № 1 (2025); 49-58 ; 2312-3168 ; 1814-4861
Popis súboru: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3451/1311; Sims J.N., Yedjou C.G., Abugri D., Payton M., Turner T., Miele L., Tchounwou P.B. Racial Disparities and Preventive Measures to Renal Cell Carcinoma. Int J Environ Res Public Health. 2018; 15(6). doi:10.3390/ijerph15061089.; Bedke J., Gauler T., Grünwald V., Hegele A., Herrmann E., Hinz S., Janssen J., Schmitz S., Schostak M., Tesch H., Zastrow S., Miller K. Systemic therapy in metastatic renal cell carcinoma. World J Urol. 2017; 35(2): 179–88. doi:10.1007/s00345-016-1868-5.; Armstrong A.J., Halabi S., Eisen T., Broderick S., Stadler W.M., Jones R.J., Garcia J.A., Vaishampayan U.N., Picus J., Hawkins R.E., Hainsworth J.D., Kollmannsberger C.K., Logan T.F., Puzanov I., Pickering L.M., Ryan C.W., Protheroe A., Lusk C.M., Oberg S., George D.J. Everolimus versus sunitinib for patients with metastatic non-clear cell renal cell carcinoma (ASPEN): a multicentre, open-label, randomized phase 2 trial. Lancet Oncol. 2016; 17(3): 378–88. doi:10.1016/S1470-2045(15)00515-X.; Dutcher J.P., de Souza P., McDermott D., Figlin R.A., Berkenblit A., Thiele A., Krygowski M., Strahs A., Feingold J., Hudes G. Effect of temsirolimus versus interferon-alpha on outcome of patients with advanced renal cell carcinoma of different tumor histologies. Med Oncol. 2009; 26(2): 202–9. doi:10.1007/s12032-009-9177-0.; Bergmann L., Grünwald V., Maute L., Grimm M.O., Weikert S., Schleicher J., Klotz T., Greiner J., Flörcken A., Hartmann A., Gauler T. A Randomized Phase IIa Trial with Temsirolimus versus Sunitinib in Advanced Non-Clear Cell Renal Cell Carcinoma: An Intergroup Study of the CESAR Central European Society for Anticancer Drug Research-EWIV and the Interdisciplinary Working Group on Renal Cell Cancer (IAGN) of the German Cancer Society. Oncol Res Treat. 2020; 43(7–8): 333–39. doi:10.1159/000508450.; Chahoud J., Msaouel P., Campbell M.T., Bathala T., Xiao L., Gao J., Zurita A.J., Shah A.Y., Jonasch E., Sharma P., Tannir N.M. Nivolumab for the Treatment of Patients with Metastatic Non-Clear Cell Renal Cell Carcinoma (nccRCC): A Single-Institutional Experience and Literature Meta-Analysis. Oncologist. 2020; 25(3): 252–58. doi:10.1634/theoncologist.2019-0372.; Wallis C.J.D., Butaney M., Satkunasivam R., Freedland S.J., Patel S.P., Hamid O., Pal S.K., Klaassen Z. Association of Patient Sex With Efficacy of Immune Checkpoint Inhibitors and Overall Survival in Advanced Cancers: A Systematic Review and Meta-analysis. JAMA Oncol. 2019; 5(4): 529–36. doi:10.1001/jamaoncol.2018.5904.; Tomita Y., Fukasawa S., Shinohara N., Kitamura H., Oya M., Eto M., Tanabe K., Saito M., Kimura G., Yonese J., Yao M., Uemura H. Nivolumab versus everolimus in advanced renal cell carcinoma: Japanese subgroup 3-year follow-up analysis from the Phase III CheckMate 025 study. Jpn J Clin Oncol. 2019; 49(6): 506–14. doi:10.1093/jjco/hyz026.; Drobner J., Portal D., Runcie K., Yang Y., Singer E.A. Systemic Treatment for Advanced and Metastatic Non-Clear Cell Renal Cell Carcinoma: Examining Modern Therapeutic Strategies for a Notoriously Challenging Malignancy. J Kidney Cancer VHL. 2023; 10(3): 37–60. doi:10.15586/jkcvhl.v10i3.295.; Powles T., Plimack E.R., Soulières D., Waddell T., Stus V., Gafanov R., Nosov D., Pouliot F., Melichar B., Vynnychenko I., Azevedo S.J., Borchiellini D., McDermott R.S., Bedke J., Tamada S., Yin L., Chen M., Molife L.R., Atkins M.B., Rini B.I. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020; 21(12): 1563–73. doi:10.1016/S1470-2045(20)30436-8. Erratum in: Lancet Oncol. 2020; 21(12). doi:10.1016/S1470-2045(20)30699-9.; Motzer R.J., Tannir N.M., McDermott D.F., Arén Frontera O., Melichar B., Choueiri T.K., Plimack E.R., Barthélémy P., Porta C., George S., Powles T., Donskov F., Neiman V., Kollmannsberger C.K., Salman P., Gurney H., Hawkins R., Ravaud A., Grimm M.O., Bracarda S., Barrios C.H., Tomita Y., Castellano D., Rini B.I., Chen A.C., Mekan S., McHenry M.B., Wind-Rotolo M., Doan J., Sharma P., Hammers H.J., Escudier B.; CheckMate 214 Investigators. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N Engl J Med. 2018; 378(14): 1277–90. doi:10.1056/NEJMoa1712126.; Lee C.H., Voss M.H., Carlo M.I., Chen Y.B., Zucker M., Knezevic A., Lefkowitz R.A., Shapnik N., Dadoun C., Reznik E., Shah N.J., Owens C.N., McHugh D.J., Aggen D.H., Laccetti A.L., Kotecha R., Feldman D.R., Motzer R.J. Phase II Trial of Cabozantinib Plus Nivolumab in Patients With Non-Clear-Cell Renal Cell Carcinoma and Genomic Correlates. J Clin Oncol. 2022; 40(21): 2333–41. doi:10.1200/JCO.21.01944.; Barata P., Tangen C., Plets M., Thompson Jr I.M., Narayan V., George D.J., Heng D.Y.C., Shuch B., Stein M., Gulati S., Tretiakova M., Tripathi A., Bjarnason G.A., Humphrey P., Adeniran A., Vaishampayan U., Alva A., Zhang T., Cole S., Lara Jr P.N., Lerner S.P., Balzer-Haas N., Pal S.K. Final Overall SurvivalAnalysis of S1500:ARandomized, Phase II Study Comparing Sunitinib With Cabozantinib, Crizotinib, and Savolitinib in Advanced Papillary Renal Cell Carcinoma. J Clin Oncol. 2024; 42(33): 3911–16. doi:10.1200/JCO.24.00767.; Motzer R.J., Penkov K., Haanen J., Rini B., Albiges L., Campbell M.T., Venugopa lB., Kollmannsberger C., Negrier S., Uemura M., Lee J.L., Vasiliev A., Miller W.H. Jr, Gurney H., Schmidinger M., Larkin J., Atkins M.B., Bedke J., Alekseev B., Wang J., Mariani M., Robbins P.B., Chudnovsky A., Fowst C., Hariharan S., Huang B., di Pietro A., Choueiri T.K. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019; 380(12): 1103–15. doi:10.1056/NEJMoa1816047.; Graham J., Wells J.C., Dudani S., Gan C.L., Donskov F., Lee J.L., Kollmannsberger C.K., Meza L., Beuselinck B., Hansen A., North S.A., Bjarnason G.A., Sayegh N., Kanesvaran R., Wood L.A., Hotte S.J., McKay R.R., Choueiri T.K., Heng D.Y.C. Outcomes of patients with advanced non-clear cell renal cell carcinoma treated with first-line immune checkpoint inhibitor therapy. Eur J Cancer. 2022; 171: 124–32. doi:10.1016/j.ejca.2022.05.002.; Hahn A.W., Surasi D.S., Viscuse P.V., Bathala T.K., Wiele A.J., Campbell M.T., Zurita A.J., Shah A.Y., Jonasch E., Gao J., Goswami S., Alhalabi O., Rao P., Sircar K., Tannir N.M., Msaouel P. Treatment Outcomes in Patients With Metastatic Renal Cell Carcinoma With Sarcomatoid and/or Rhabdoid Dedifferentiation After Progression on Immune Checkpoint Therapy. Oncologist. 2024; 29(5): 392–99. doi:10.1093/oncolo/oyad302.; https://www.siboncoj.ru/jour/article/view/3451
-
3
Autori: a ďalší
Zdroj: Сибирский онкологический журнал, Vol 21, Iss 4, Pp 16-24 (2022)
Predmety: локальная безрецидивная выживаемость, renal cell carcinoma, прогностические факторы местного рецидива, risk factors of local recurrence, local recurrence-free survival rate, местный рецидив, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, predictors of local recurrence, renal cell carcinoma, local recurrence, predictors of local recurrence, почечно-клеточный рак, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, predisposing factors of local recurrence, предрасполагающие факторы местного рецидива, предикторы местного рецидива, prognostic factors of local recurrence, local recurrence, факторы риска местного рецидива, RC254-282
Prístupová URL adresa: https://doaj.org/article/64a39eadb1a14ef5b7fff91e735d8d3e
-
4
Autori: Fischenko, Ya.V.
Zdroj: Bolʹ, Sustavy, Pozvonočnik, Vol 5, Iss 3.19, Pp 53-58 (2015)
PAIN. JOINTS. SPINE; № 3.19 (2015); 53-58
Боль. Суставы. Позвоночник-Bolʹ, sustavy, pozvonočnik; № 3.19 (2015); 53-58
Біль. Суглоби. Хребет-Bolʹ, sustavy, pozvonočnik; № 3.19 (2015); 53-58Predmety: 03 medical and health sciences, nonsteroidal anti-inflammatory drugs, neurocompressive pain syndrome, Medicine (General), 0302 clinical medicine, R5-920, нестероидные противовоспалительные препараты, нейрокомпрессионный болевой синдром, остеохондроз, прогностические факторы, нестероїдні протизапальні препарати, нейрокомпресійний больовий синдром, прогностичні фактори, osteochondrosis, prognostic factors, 3. Good health
Popis súboru: application/pdf
Prístupová URL adresa: http://pjs.zaslavsky.com.ua/article/download/79269/121123
https://doaj.org/article/c8e3a69faf194a9dbf94ea84d256954e
http://pjs.zaslavsky.com.ua/article/download/79269/121123
https://core.ac.uk/display/87760155
http://pjs.zaslavsky.com.ua/article/view/79269/0
http://pjs.zaslavsky.com.ua/article/view/79269 -
5
Autori: a ďalší
Predmety: PROGNOSTIC FACTORS, SEVERE COURSE, NEW CORONAVIRUS INFECTION, SARS-COV-2, ПРОГНОСТИЧЕСКИЕ ФАКТОРЫ, ТЯЖЕЛОЕ ТЕЧЕНИЕ, НОВАЯ КОРОНАВИРУСНАЯ ИНФЕКЦИЯ
Popis súboru: application/pdf
Relation: Уральский медицинский журнал. 2024. № 1(23).; http://elib.usma.ru/handle/usma/19924
Dostupnosť: http://elib.usma.ru/handle/usma/19924
-
6
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Siberian journal of oncology; Том 23, № 4 (2024); 172-185 ; Сибирский онкологический журнал; Том 23, № 4 (2024); 172-185 ; 2312-3168 ; 1814-4861
Predmety: лимфатические узлы, tumor vascularization, endometrioid adenocarcinoma, vascular endothelial growth factor, angiogenesis factors, prognostic factors, lymph nodes, васкуляризация опухоли, эндометриодная аденокарцинома, фактор роста эндотелия сосудов, факторы ангиогенеза, прогностические факторы
Popis súboru: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3203/1262; Abdelmaksoud N.M., El-Mahdy H.A., Ismail A., Elsakka E.G.E., El-Husseiny A.A., Khidr E.G., Ali E.M., Rashed M.H., El-Demerdash F.E., Doghish A.S. The role of miRNAs in the pathogenesis and therapeutic resistance of endometrial cancer: a spotlight on the convergence of signaling pathways. Pathol Res Pract. 2023; 244. doi:10.1016/j.prp.2023.154411.; Khan N.A., Elsori D., Rashid G., Tamanna S., Chakraborty A., Farooqi A., Kar A., Sambyal N., Kamal M.A. Unraveling the relationship between the renin-angiotensin system and endometrial cancer: a comprehensive review. Front Oncol. 2023; 13. doi:10.3389/fonc.2023.1235418.; Al-Kuraishy H.M., Al-Maiahy T.J., Al-Gareeb A.I., Alexiou A., Papadakis M., Saad H.M., Batiha G.E. The possible role furin and furin inhibitors in endometrial adenocarcinoma: A narrative review. Cancer Rep (Hoboken). 2024; 7(1). doi:10.1002/cnr2.1920.; Carmeliet P., Jain R.K. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801): 249–57. doi:10.1038/35025220.; Yetkin-Arik B., Kastelein A.W., Klaassen I., Jansen C.H.J.R., Latul Y.P., Vittori M., Biri A., Kahraman K., Griffioen A.W., Amant F., Lok C.A.R., Schlingemann R.O., van Noorden C.J.F. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochim Biophys Acta Rev Cancer. 2021; 1875(1). doi:10.1016/j.bbcan.2020.188446.; Semenza G.L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3(10): 721–32. doi:10.1038/nrc1187.; Bhosale N.M., Arakeri S.U., Reddy A.K., Mudanur S.R. Endometrial blood vessel morphometry in patients presenting with abnormal uterine bleeding. Indian J Pathol Microbiol. 2022; 65(4): 844–50. doi:10.4103/ ijpm.ijpm_89_21.; Pijnenborg J.M., Wijnakker M., Hagelstein J., Delvoux B., Groothuis P.G. Hypoxia contributes to development of recurrent endometrial carcinoma. Int J Gynecol Cancer. 2007; 17(4): 897–904. doi:10.1111/j.1525-1438.2007.00893.x.; Yunusova N.V., Kondakova I.V., Kolomiets L.A., Afanas’ev S.G., Kishkina A.Y., Spirina L.V. The role of metabolic syndrome variant in the malignant tumors progression. Diabetes Metab Syndr. 2018; 12(5): 807–12. doi:10.1016/j.dsx.2018.04.028.; Wang P.P., He X.Y., Wang R., Wang Z., Wang Y.G. High leptin level is an independent risk factor of endometrial cancer: a meta-analysis. Cell Physiol Biochem. 2014; 34(5): 1477–84. doi:10.1159/000366352.; Ellis P.E., Barron G.A., Bermano G. Adipocytokines and their relationship to endometrial cancer risk: A systematic review and meta-analysis. Gynecol Oncol. 2020; 158(2): 507–16. doi:10.1016/j.ygyno.2020.05.033.; Boroń D., Nowakowski R., Grabarek B.O., Zmarzły N., Opławski M. Expression Pattern of Leptin and Its Receptors in Endometrioid Endometrial Cancer. J Clin Med. 2021; 10(13): 2787. doi:10.3390/jcm10132787.; Kang Y.E., Kim J.M., Joung K.H., Lee J.H., You B.R., Choi M.J., Ryu M.J., Ko Y.B., Lee M.A., Lee J., Ku B.J., Shong M., Lee K.H., Kim H.J. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction. PLoS One. 2016; 11(4). doi:10.1371/journal.pone.0154003.; Zhou W., Guo S., Gonzalez-Perez R.R. Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. Br J Cancer. 2011; 104(1): 128–37. doi:10.1038/sj.bjc.6606013.; Gonzalez-Perez R.R., Lanier V., Newman G. Leptin’s Pro-Angiogenic Signature in Breast Cancer. Cancers (Basel). 2013; 5(3): 1140–62. doi:10.3390/cancers5031140.; Park H.Y., Kwon H.M., Lim H.J., Hong B.K., Lee J.Y., Park B.E., Jang Y., Cho S.Y., Kim H.S. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001; 33(2): 95–102. doi:10.1038/emm.2001.17.; Guo S., Liu M., Wang G., Torroella-Kouri M., Gonzalez-Perez R.R. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim Biophys Acta. 2012; 1825(2): 207–22. doi:10.1016/j.bbcan.2012.01.002.; Baumann K.E., Siamakpour-Reihani S., Dottino J., Dai Y., Bentley R., Jiang C., Zhang D., Sibley A.B., Zhou C., Berchuck A., Owzar K., Bae-Jump V., Secord A.A. High-fat diet and obesity are associated with differential angiogenic gene expression in epithelial ovarian cancer. Gynecol Oncol. 2023; 179: 97–105. doi:10.1016/j.ygyno.2023.11.002.; Michalczyk K., Niklas N., Rychlicka M., Cymbaluk-Płoska A. The Influence of Biologically Active Substances Secreted by the Adipose Tissue on Endometrial Cancer. Diagnostics (Basel). 2021; 11(3): 494. doi:10.3390/diagnostics11030494.; Yu Z., Zhang Q., Wei S., Zhang Y., Zhou T., Zhang Q., Shi R., Zinovkin D., Pranjol Z.I., Zhang J., Wang H. CD146+CAFs promote progression of endometrial cancer by inducing angiogenesis and vasculogenic mimicry via IL-10/JAK1/STAT3 pathway. Cell Commun Signal. 2024; 22(1): 170. doi:10.1186/s12964-024-01550-9.; Ротин Д.Л., Титов К.С., Казаков А.М. Васкулогенная мимикрия при меланоме: молекулярные механизмы и клиническое значение. Российский биотерапевтический журнал. 2019; 18(1): 16–24. doi:10.17650/1726-9784-2019-18-1-16-24.; Лапкина Е.З., Есимбекова А.Р., Рукша Т.Г. Васкулогенная мимикрия. Архив патологии. 2023; 85(6): 62–9. doi:10.17116/patol20238506162.; Hashimoto I., Kodama J., Seki N., Hongo A., Miyagi Y., Yoshinouchi M., Kudo T. Macrophage infiltration and angiogenesis in endometrial cancer. Anticancer Res. 2000; 20(6C): 4853–6.; Soeda S., Nakamura N., Ozeki T., Nishiyama H., Hojo H., Yamada H., Abe M., Sato A. Tumor-associated macrophages correlate with vascular space invasion and myometrial invasion in endometrial carcinoma. Gynecol Oncol. 2008; 109(1): 122–8. doi:10.1016/j.ygyno.2007.12.033.; Espinosa I., José Carnicer M., Catasus L., Canet B., D’angelo E., Zannoni G.F., Prat J. Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvessel density, and HIF1A have a crucial role. Am J Surg Pathol. 2010; 34(11): 1708–14. doi:10.1097/PAS.0b013e3181f32168.; Pugh C.W., Ratcliffe P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003; 9(6): 677–84. doi:10.1038/nm0603-677.; Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Antiand Pro-Angiogenic Therapies. Genes Cancer. 2011; 2(12): 1097–105. doi:10.1177/1947601911423031.; Nishida N., Yano H., Nishida T., Kamura T., Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006; 2(3): 213–9. doi:10.2147/vhrm.2006.2.3.213.; Wang J., Taylor A., Showeil R., Trivedi P., Horimoto Y., Bagwan I., Ewington L., Lam E.W., El-Bahrawy M.A. Expression profiling and significance of VEGF-A, VEGFR2, VEGFR3 and related proteins in endometrial carcinoma. Cytokine. 2014; 68(2): 94–100. doi:10.1016/j.cyto.2014.04.005.; Bottaro D.P., Liotta L.A. Cancer: Out of air is not out of action. Nature. 2003; 423(6940): 593–5. doi:10.1038/423593a.; Guo S., Colbert L.S., Fuller M., Zhang Y., Gonzalez-Perez R.R. Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophys Acta. 2010; 1806(1): 108–21. doi:10.1016/j.bbcan.2010.04.004.; Mori H., Nishida H., Kusaba T., Kawamura K., Oyama Y., Daa T. Clinicopathological correlations of endometrioid and clear cell carcinomas in the uterus and ovary. Medicine (Baltimore). 2023; 102(37). doi:10.1097/MD.0000000000035301.; Wang X.X., Hua T., Wang H.B. Estrogen receptor-related receptor γ uppresses hypoxia-induced angiogenesis by regulating VEGFA in endometrial cancer. Gynecol Endocrinol. 2023; 39(1). doi:10.1080/09513590.2023.2264411.; Mieszało K., Ławicki S., Szmitkowski M. Przydatność oznaczania metaloproteinaz (MMPs) i ich inhibitorów (TIMPs) w diagnostyce nowotworów narządu rodnego [The utility of metalloproteinases (MMPs) and their inhibitors (TIMPs) in diagnostics of gynecological malignancies]. Pol Merkur Lekarski. 2016; 40(237): 193–7. Polish.; Ewington L., Taylor A., Sriraksa R., Horimoto Y., Lam E.W., El-Bahrawy M.A. The expression of interleukin-8 and interleukin-8 receptors in endometrial carcinoma. Cytokine. 2012; 59(2): 417–22. doi:10.1016/j. cyto.2012.04.036.; Kotowicz B., Fuksiewicz M., Jonska-Gmyrek J., Berezowska A., Radziszewski J., Bidzinski M., Kowalska M. Clinical significance of pretreatment serum levels of VEGF and its receptors, IL-8, and their prognostic value in type I and II endometrial cancer patients. PLoS One. 2017; 12(10). doi:10.1371/journal.pone.0184576.; Kim C.S., Park H.S., Kawada T., Kim J.H., Lim D., Hubbard N.E., Kwon B.S., Erickson K.L., Yu R. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond). 2006; 30(9): 1347–55. doi:10.1038/sj.ijo.0803259.; Ozalp S., Yalcin O.T., Acikalin M., Tanir H.M., Oner U., Akkoyunlu A. Microvessel density (MVD) as a prognosticator in endometrial carcinoma. Eur J Gynaecol Oncol. 2003; 24(3–4): 305–8.; Wang J.Z., Xiong Y.J., Man G.C.W., Chen X.Y., Kwong J., Wang C.C. Clinicopathological and prognostic significance of blood microvessel density in endometrial cancer: a meta-analysis and subgroup analysis. Arch Gynecol Obstet. 2018; 297(3): 731–40. doi:10.1007/s00404-018-4648-1.; Kaku T., Kamura T., Kinukawa N., Kobayashi H., Sakai K., Tsuruchi N., Saito T., Kawauchi S., Tsuneyoshi M., Nakano H. Angiogenesis in endometrial carcinoma. Cancer. 1997; 80(4): 741–7. doi:10.1002/(sici)1097-0142(19970815)80:43.0.co;2-t.; Kilinç E., Bahar A.Y. The Value of Intratumoral and Extratumoral Microvessel Density for the Tumor-dominated Area in the Endometrial Carcinoma. Appl Immunohistochem Mol Morphol. 2022; 30(7): 501–8. doi:10.1097/PAI.0000000000001044.; Watanabe M., Aoki Y., Kase H., Tanaka K. Heparanase expression and angiogenesis in endometrial cancer. Gynecol Obstet Invest. 2003; 56(2): 77–82. doi:10.1159/000072821.; Wagatsuma S., Konno R., Sato S., Yajima A. Tumor angiogenesis, hepatocyte growth factor, and c-Met expression in endometrial carcinoma. Cancer. 1998; 82(3): 520–30. doi:10.1002/(sici)1097-0142-(19980201)82:33.0.co;2-3.; Ozuysal S., Bilgin T., Ozan H., Kara H.F., Oztürk H., Ercan I. Angiogenesis in endometrial carcinoma: correlation with survival and clinicopathologic risk factors. Gynecol Obstet Invest. 2003; 55(3): 173–7. doi:10.1159/000071533.; Erdem O., Erdem M., Dursun A., Akyol G., Erdem A. Angiogenesis, p53, and bcl-2 expression as prognostic indicators in endometrial cancer: comparison with traditional clinicopathologic variables. Int J Gynecol Pathol. 2003; 22(3): 254–60. doi:10.1097/01.PGP.0000070850.25718. A5.; Drocaş I., Crăiţoiu Ş., Stepan A.E., Iliescu D.G., Drocaş I.A., Stepan M.D. The analysis of hormonal status and vascular and cell proliferation in endometrioid endometrial adenocarcinomas. Rom J Morphol Embryol. 2022; 63(1): 113–20. doi:10.47162/RJME.63.1.11.; Guşet G., Costi S., Lazăr E., Dema A., Cornianu M., Vernic C., Păiuşan L. Expression of vascular endothelial growth factor (VEGF) and assessment of microvascular density with CD34 as prognostic markers for endometrial carcinoma. Rom J Morphol Embryol. 2010; 51(4): 677–82.; Erdem O., Taskiran C., Onan M.A., Erdem M., Guner H., Ataoglu O. CD105 expression is an independent predictor of survival in patients with endometrial cancer. Gynecol Oncol. 2006; 103(3): 1007–11. doi:10.1016/j. ygyno.2006.06.010.; Saad R.S., Jasnosz K.M., Tung M.Y., Silverman J.F. Endoglin (CD105) expression in endometrial carcinoma. Int J Gynecol Pathol. 2003; 22(3): 248–53. doi:10.1097/01.PGP.0000070852.25718.37.; Ferrara N., Kerbel R.S. Angiogenesis as a therapeutic target. Nature. 2005; 438(7070): 967–74. doi:10.1038/nature04483.; Oza A.M., Selle F., Davidenko I., Korach J., Mendiola C., Pautier P., Chmielowska E., Bamias A., DeCensi A., Zvirbule Z., González-Martín A., Hegg R., Joly F., Zamagni C., Gadducci A., Martin N., Robb S., Colombo N. Efficacy and Safety of Bevacizumab-Containing Therapy in Newly Diagnosed Ovarian Cancer: ROSiA Single-Arm Phase 3B Study. Int J Gynecol Cancer. 2017; 27(1): 50–8. doi:10.1097/IGC.0000000000000836.; van Beijnum J.R., Nowak-Sliwinska P., Huijbers E.J., Thijssen V.L., Griffioen A.W. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev. 2015; 67(2): 441–61. doi:10.1124/pr.114.010215.; Dizon D.S., Sill M.W., Schilder J.M., McGonigle K.F., Rahman Z., Miller D.S., Mutch D.G., Leslie K.K. A phase II evaluation of nintedanib (BIBF-1120) in the treatment of recurrent or persistent endometrial cancer: an NRG Oncology/Gynecologic Oncology Group Study. Gynecol Oncol. 2014; 135(3): 441–5. doi:10.1016/j.ygyno.2014.10.001.; Hong X., Qiu S., Wu X., Chen S., Chen X., Zhang B., He A., Xu Y., Wang J., Gao Y., Xu X., Sun L., Zhang Y., Xiang L., Zhou J., Guan Q., Zhu Y., Liu H., Xu H., Zhou Y., Chen B., Shen Y. Efficacy and Safety of Anlotinib in Overall and Disease-Specific Advanced Gynecological Cancer: A Real-World Study. Drug Des Devel Ther. 2023; 17: 2025–33. doi:10.2147/DDDT.S408304.; Coleman R.L., Sill M.W., Lankes H.A., Fader A.N., Finkler N.J., Hoffman J.S., Rose P.G., Sutton G.P., Drescher C.W., McMeekin D.S., Hu W., Deavers M., Godwin A.K., Alpaugh R.K., Sood A.K. A phase II evaluation of aflibercept in the treatment of recurrent or persistent endometrial cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2012; 127(3): 538–43. doi:10.1016/j.ygyno.2012.08.020.; Zou Y., Xu Y., Chen X., Zheng L. Advances in the application of immune checkpoint inhibitors in gynecological tumors. Int Immunopharmacol. 2023; 117. doi:10.1016/j.intimp.2023.109774.; Harmsen M.J., Arduç A., Bleeker M.C.G., Juffermans L.J.M., Griffioen A.W., Jordanova E.S., Huirne J.A.F. Increased Angiogenesis and Lymphangiogenesis in Adenomyosis Visualized by Multiplex Immunohistochemistry. Int J Mol Sci. 2022; 23(15). doi:10.3390/ijms23158434.; Майбородин И.В., Красильников С.Э., Козяков А.Е., Бабаянц Е.В., Кулиджанян А.П. Целесообразность изучения опухолевого ангиогенеза как прогностического фактора развития рака. Новости хирургии. 2015; 23(3): 339–47. doi:10.18484/2305-0047.2015.3.339.; Майбородин И.В., Козяков А.Е., Бабаянц Е.В., Красильников С.Э. Ангиогенез в лимфатических узлах при развитии рака в регионе лимфосбора. Новости хирургии. 2016; 24(6): 579–85. doi:10.18484/2305-0047.2016.6.579.; Maghraby H.K., Elsarha A.I., Saad R.S. Peritumoral lymphatic vessel density as a prognostic parameter in endometrial carcinoma: an immunohistochemical study. Indian J Pathol Microbiol. 2010; 53(3): 465–9. doi:10.4103/0377-4929.68278.; Jumaah A.S., Al-Haddad H.S., McAllister K.A., Yasseen A.A. The clinicopathology and survival characteristics of patients with POLE proofreading mutations in endometrial carcinoma: A systematic review and metaanalysis. PLoS One. 2022; 17(2). doi:10.1371/journal.pone.0263585.; Li L.L., Li H., Li J., Zhang X.B., Wang Z.Q., Shen D.H., Wang J.L. [Risk factor analysis of lymph node metastasis in endometrial carcinoma combined with molecular types]. Zhonghua Fu Chan Ke Za Zhi. 2023; 58(10): 733–41. Chinese. doi:10.3760/cma.j.cn112141-20230317-00125.; Ju W., Park H.M., Lee S.N., Sung S.H., Kim S.C. Loss of hMLH1 expression is associated with less aggressive clinicopathological features in sporadic endometrioid endometrial adenocarcinoma. J Obstet Gynaecol Res. 2006; 32(5): 454–60. doi:10.1111/j.1447-0756.2006.00438.x.; Peiró G., Diebold J., Lohse P., Ruebsamen H., Lohse P., Baretton G.B., Löhrs U. Microsatellite instability, loss of heterozygosity, and loss of hMLH1 and hMSH2 protein expression in endometrial carcinoma. Hum Pathol. 2002; 33(3): 347–54. doi:10.1053/hupa.2002.32220.; Honoré L.H., Hanson J., Andrew S.E. Microsatellite instability in endometrioid endometrial carcinoma: correlation with clinically relevant pathologic variables. Int J Gynecol Cancer. 2006; 16(3): 1386–92. doi:10.1111/j.1525-1438.2006.00535.x.; Stewart C.J., Amanuel B., Grieu F., Carrello A., Iacopetta B. KRAS mutation and microsatellite instability in endometrial adenocarcinomas showing MELF-type myometrial invasion. J Clin Pathol. 2010; 63(7): 604–8. doi:10.1136/jcp.2009.069500.; Crumley S., Kurnit K., Hudgens C., Fellman B., Tetzlaff M.T., Broaddus R. Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes. Mod Pathol. 2019; 32(3): 396–404. doi:10.1038/s41379-018-0148-x.; Morin P.J. beta-catenin signaling and cancer. Bioessays. 1999; 21(12): 1021–30. doi:10.1002/(SICI)1521-1878(199912)22:13.0.CO;2-P.; Bolivar A.M., Luthra R., Mehrotra M., Chen W., Barkoh B.A., Hu P., Zhang W., Broaddus R.R. Targeted next-generation sequencing of endometrial cancer and matched circulating tumor DNA: identification of plasma-based, tumor-associated mutations in early stage patients. Mod Pathol. 2019; 32(3): 405–14. doi:10.1038/s41379-018-0158-8.; Watanabe T., Nanamiya H., Kojima M., Nomura S., Furukawa S., Soeda S., Tanaka D., Isogai T., Imai J.I., Watanabe S., Fujimori K. Clinical relevance of oncogenic driver mutations identified in endometrial carcinoma. Transl Oncol. 2021; 14(3). doi:10.1016/j.tranon.2021.101010.; van den Heerik A.S.V.M., Aiyer K.T.S., Stelloo E., Jürgenliemk-Schulz I.M., Lutgens L.C.H.W., Jobsen J.J., Mens J.W.M., van der SteenBanasik E.M., Creutzberg C.L., Smit V.T.H.B.M., Horeweg N., Bosse T. Microcystic elongated and fragmented (MELF) pattern of invasion: Molecular features and prognostic significance in the PORTEC-1 and -2 trials. Gynecol Oncol. 2022; 166(3): 530–7. doi:10.1016/j.ygyno.2022.06.027.; Kurnit K.C., Fellman B.M., Mills G.B., Bowser J.L., Xie S., Broaddus R.R. Adjuvant treatment in early-stage endometrial cancer: context-dependent impact of somatic CTNNB1 mutation on recurrence-free survival. Int J Gynecol Cancer. 2022; 32(7): 869–74. doi:10.1136/ ijgc-2021-003340.; Kurnit K.C., Kim G.N., Fellman B.M., Urbauer D.L., Mills G.B., Zhang W., Broaddus R.R. CTNNB1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence. Mod Pathol. 2017; 30(7): 1032–41. doi:10.1038/modpathol.2017.15.; Lane D.P., Benchimol S. p53: oncogene or anti-oncogene? Genes Dev. 1990; 4(1): 1–8. doi:10.1101/gad.4.1.1.; Hollstein M., Sidransky D., Vogelstein B., Harris C.C. p53 mutations in human cancers. Science. 1991; 253(5015): 49–53. doi:10.1126/science.1905840.; Kumari P., Sharma I., Saha S.C., Srinivasan R., Sharma A. Promoter methylation status of key genes and its implications in the pathogenesis of endometriosis, endometrioid carcinoma of ovary and endometrioid endometrial cancer. J Cancer Res Ther. 2022; 18(Supplement): 328–34. doi:10.4103/jcrt.JCRT_1704_20.; Brett M.A., Atenafu E.G., Singh N., Ghatage P., Clarke B.A., Nelson G.S., Bernardini M.Q., Köbel M. Equivalent Survival of p53 Mutated Endometrial Endometrioid Carcinoma Grade 3 and Endometrial Serous Carcinoma. Int J Gynecol Pathol. 2021; 40(2): 116–23. doi:10.1097/PGP.0000000000000674.; Miyasaka A., Oda K., Ikeda Y., Sone K., Fukuda T., Inaba K., Makii C., Enomoto A., Hosoya N., Tanikawa M., Uehara Y., Arimoto T., Kuramoto H., Wada-Hiraike O., Miyagawa K., Yano T., Kawana K., Osuga Y., Fujii T. PI3K/mTOR pathway inhibition overcomes radioresistance via suppression of the HIF1-α/VEGF pathway in endometrial cancer. Gynecol Oncol. 2015; 138(1): 174–80. doi:10.1016/j.ygyno.2015.04.015.; https://www.siboncoj.ru/jour/article/view/3203
-
7
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 4 (2023); 625-636 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 4 (2023); 625-636 ; 2541-8017 ; 2223-9022
Predmety: прогностические факторы нетравматического субарахноидального кровоизлияния, neuromarkers of nontraumatic subarachnoid hemorrhage, S100-B, NSE, GFAP, prognostic factors of nontraumatic subarachnoid hemorrhage, нейромаркеры при нетравматическом субарахноидальном кровоизлиянии
Popis súboru: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1726/1361; https://www.jnmp.ru/jour/article/view/1726/1421; Скворцова В.И., Стаховская Л.В., Айриян Н.Ю. Эпидемиология инсульта в Российской Федерации. Системные гипертензии. 2005;(1):10–12.; van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–318. PMID: 17258671. doi:10.1016/S0140-6736(07)60153-6.; Bowles E. Cerebral aneurysm and aneurysmal subarachnoid haemorrhage. Nurs Stand. 2014;28(34):52–59. PMID: 24749614. doi:10.7748/ns2014.04.28.34.52.e8694.; Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 2006;355(9):928–939. PMID: 16943405. doi:10.1056/NEJMra052760.; Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies : a systematic review. Lancet Neurol. 2009;8(4):355–369. PMID: 19233729. doi:10.1016/S1474-4422(09)70025-0.; Давыдов В.В., Комаров О.С.; Шестопалов А.В. (ред.). Биохимия нервной ткани : учебно-методическое пособие. Москва: Белый ветер; 2018.; Zimmer DB, Cornwall EH, Landar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull. 1995;37(4):417–429. PMID: 7620916. doi:10.1016/0361-9230(95)00040-2.; Hayashi K, Hoshida Y, Horie Y, Takahashi K, Taguchi K, Sonobe H, et al. Immunohistochemical study on the distribution of alpha and beta subunits of S-100 protein in brain tumors. Acta Neuropathol. 1991;81(6):657–663. PMID: 1882640. doi:10.1007/BF00296376.; Michetti F, Miani N, De Renzis G, Caniglia A, Correr S. Nuclear localization of S-100 protein. J Neurochem. 1974;22(2):239–244. PMID: 4208418. doi:10.1111/j.1471-4159.1974.tb11585.x.; Moss S. E. (ed.). The annexins. London&Chapel Hill: Portland Press; 1992.; Zimmer DB, Van Eldik LJ. Identification of a molecular target for the calcium-modulated protein S100. Fructose-1,6-bisphosphate aldolase. J Biol Chem. 1986;261(24):11424–11428. PMID: 3733759; Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793(6):1008–1022. doi:10.1016/j.bbamcr.2008.11.009. Epub 2008 Dec 7. PMID: 19110011.; Skripnikova EV, Gusev NB. Interaction of smooth muscle caldesmon with S-100 protein. FEBS Lett. 1989;257(2):380–382. PMID: 2531095. doi:10.1016/0014-5793(89)81577-7.; Wilder PT, Rustandi RR, Drohat AC, Weber DJ. S100B(betabeta) inhibits the protein kinase C-dependent phosphorylation of a peptide derived from p53 in a Ca 2+ -dependent manner. Protein Sci. 1998;7(3):794–798. PMID: 9541413. doi:10.1002/pro.5560070330.; Gentil BJ, Delphin C, Mbele GO, Deloulme JC, Ferro M, Garin J, et al. The giant protein AHNAK is a specific target for the calcium- and zinc-binding S100B protein: potential implications for Ca 2+ homeostasis regulation by S100B. J Biol Chem. 2001;276(26):23253–23261. PMID: 11312263. doi:10.1074/jbc.M010655200.; Michetti F, D’Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, et al. The S100B story: from biomarker to active factor in neural injury. J Neurochem. 2019;148(2):168–187. PMID: 30144068. doi:10.1111/jnc.14574.; Gazzolo D, Florio P, Ciotti S, Marinoni E, di Iorio R, Bruschettini M, et al. S100B protein in urine of preterm newborns with ominous outcome. Pediatr Res. 2005;58(6):1170–1174. PMID: 16306188. doi:10.1203/01.pdr.0000185131.22985.30.; Florio P, Michetti F, Bruschettini M, Lituania M, Bruschettini P, Severi FM, et al. Amniotic fluid S100B protein in mid-gestation and intrauterine fetal death. Lancet. 2004;364(9430):270–272. PMID: 15262105. doi:10.1016/S0140-6736(04)16677-4.; Gazzolo D, Lituania M, Bruschettini M, Ciotti S, Sacchi R, Serra G, et al. S100B protein levels in saliva: correlation with gestational age in normal term and preterm newborns. Clin Biochem. 2005;38(3):229–233. PMID: 15708543. doi:10.1016/j.clinbiochem.2004.12.006.; Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res. 2020;1867(6):118677. PMID: 32057918. doi:10.1016/j.bbamcr.2020.118677.; Astrand R, Undén J, Romner B. Clinical use of the calcium-binding S100B protein. Methods Mol Biol. 2013;963:373–384. PMID: 23296623. doi:10.1007/978-1-62703-230-8_23.; Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, et al. Seizure-promoting effect of blood-brain barrier disruption. Epilepsia. 2007;48(4):732–742. PMID: 17319915. doi:10.1111/j.1528-1167.2007.00988.x.; Marchi N, Fazio V, Cucullo L, Kight K, Masaryk T, Barnett G, et al. Serum transthyretin monomer as a possible marker of blood-to-CSF barrier disruption. J Neurosci. 2003;23(5):1949–1955. PMID: 12629200. doi:10.1523/JNEUROSCI.23-05-01949.2003.; Сосновский А.Ю. Применение маркера протеина S100 B в диагностике и прогнозировании исходов лечения черепно-мозговой травмы : автореферат дис. … канд. мед. наук. Москва, 2014. URL: https://search.rsl.ru/ru/record/01005557615 [Дата обращения 15. 12. 2023]; Marangos PJ, Schmechel D, Parma AM, Clark RL, Goodwin FK. Measurement of neuron-specific (NSE) and non-neuronal (NNE) isoenzymes of enolase in rat, monkey and human nervous tissue. J Neurochem. 1979;33(1):319–329. PMID: 110910. doi:10.1111/j.1471-4159.1979.tb11735.x.; Schmechel D, Marangos PJ, Brightman M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature. 1978;276(5690):834–836. PMID: 31568. doi:10.1038/276834a0.; Ishiguro Y, Kato K, Ito T, Nagaya M, Yamada N, Sugito T. Nervous system-specific enolase in serum as a marker for neuroblastoma. Pediatrics. PMID: 6356007. 1983;72(5):696–700.; Carney DN, Teeling M. Neuron-specific enolase: how useful as a cancer marker? Eur J Cancer Clin Oncol. 1988;24(5):825–828. PMID: 3049114. doi:10.1016/0277-5379(88)90190-3.; Hans P, Bonhomme V, Collette J, Moonen G. Neuron-specific enolase as a marker of in vitro neuronal damage. Part I: Assessment of neuron-specific enolase as a quantitative and specific marker of neuronal damage. J Neurosurg Anesthesiol. 1993;5(2):111–116. PMID: 8490308. doi:10.1097/00008506-199304000-00007.; Czupryna P, Grygorczuk S, Pancewicz S, Świerzbińska R, Zajkowska J, Krawczuk K, et al. Evaluation of NSE and S100B in patients with tick-borne encephalitis. Brain Behav. 2018;8(12):e01160. PMID: 30468006. doi:10.1002/brb3.1160.; Snoer AH, Vollesen ALH, Beske RP, Guo S, Hoffmann J, Jørgensen NR, et al. S100B and NSE in Cluster Headache – Evidence for Glial Cell Activation? Headache. 2020;60(8):1569–1580. PMID: 32548854. doi:10.1111/head.13864.; Yilmaz S. Serum NO, S100B, NSE concentrations in migraine and their relationship. J Clin Neurosci. 2020;82(Pt A):32–35. PMID: 33317735. doi:10.1016/j.jocn.2020.10.046.; Sun J, Li J, Cheng G, Sha B, Zhou W. Effects of hypothermia on NSE and S-100 protein levels in CSF in neonates following hypoxic/ischaemic brain damage. Acta Paediatr. 2012;101(8):e316–e320. PMID: 22452413. doi:10.1111/j.1651-2227.2012.02679.x.; Inoue S, Takahashi H, Kaneko K. The fluctuations of neuron-specific enolase (NSE) levels of cerebrospinal fluid during bacterial meningitis: the relationship between the fluctuations of NSE levels and neurological complications or outcome. Acta Paediatr Jpn. 1994;36(5):485–488. PMID: 7825447. doi:10.1111/j.1442-200x.1994.tb03230.x.; Krohn M, Dreßler J, Bauer M, Schober K, Franke H, Ondruschka B. Immunohistochemical investigation of S100 and NSE in cases of traumatic brain injury and its application for survival time determination. J Neurotrauma. 2015;32(7):430–440. PMID: 25211554. doi:10.1089/neu.2014.3524.; Топузова М.П., Алексеева Т.М., Панина Е.Б., Вавилова Т.В., Ковзелев П.Д., Портик О.А. и др. Возможность использования нейрон-специфической енолазы как биомаркера в остром периоде инсульта. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019;119(8-2):53–62. doi:10.17116/jnevro201911908253; Kim BJ, Kim YJ, Ahn SH, Kim NY, Kang DW, Kim JS, et al. The second elevation of neuron-specific enolase peak after ischemic stroke is associated with hemorrhagic transformation. J Stroke Cerebrovasc Dis. 2014;23(9):2437–2443. PMID: 25183561. doi:10.1016/j.jstrokecerebrovasdis.2014.05.020.; Cunningham RT, Watt M, Winder J, McKinstry S, Lawson JT, Johnston CF, et al. Serum neurone-specific enolase as an indicator of stroke volume. Eur J Clin Invest. 1996;26(4):298–303. PMID: 8732487. doi:10.1046/j.1365-2362.1996.129282.x.; Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res. 2000;25(9–10):1439–1451. PMID: 11059815. doi:10.1023/a:1007677003387.; Mokuno K, Kamholz J, Behrman T, Black C, Sessa M, Feinstein D, et al. Neuronal modulation of Schwann cell glial fibrillary acidic protein (GFAP). J Neurosci Res. 1989;23(4):396–405. PMID: 2769798. doi:10.1002/jnr.490230405.; Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38(6):364–374. PMID: 25975510. doi:10.1016/j.tins.2015.04.003.; Roelofs RF, Fischer DF, Houtman SH, Sluijs JA, Van Haren W, Van Leeuwen FW, et al. Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia. 2005;52(4):289–300. PMID: 16001427. doi:10.1002/glia.20243.; Li D, Liu X, Liu T, Liu H, Tong L, Jia S, et al. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia. 2020;68(5):878–897. PMID: 31626364. doi:10.1002/glia.23734.; Petzold A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res. 2015;1600:17–31. PMID: 25543069. doi:10.1016/j.brainres.2014.12.027.; Aebi U, Häner M, Troncoso J, Eichner R, Engel A. Unifying principles in intermediate filament (IF) structure and assembly. Protoplasma. 1988;145(2–3):73–81. doi:10.1007/BF01349341; Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol. 2011;93(3):421–443. PMID: 21219963. doi:10.1016/j.pneurobio.2011.01.005.; Nakamura Y, Takeda M, Angelides KJ, Tada K, Hariguchi S, Nishimura T. Assembly, disassembly, and exchange of glial fibrillary acidic protein. Glia. 1991;4(1):101–110. PMID: 1828780. doi:10.1002/glia.440040112.; Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenström H. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem. 1999;45(1):138–141. PMID: 9895354.; Eng LF, Ghirnikar RS. GFAP and astrogliosis. Brain Pathol. 1994;4(3):229–237. PMID: 7952264. doi:10.1111/j.1750-3639.1994.tb00838.x.; Tzeng SF, Hsiao HY, Mak OT. Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):335–340. PMID: 16101543. doi:10.2174/1568010054022051.; Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–647. PMID: 19782411. doi:10.1016/j.tins.2009.08.002.; Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN, et al. Time Course and Diagnostic Accuracy of Glial and Neuronal Blood Biomarkers GFAP and UCH-L1 in a Large Cohort of Trauma Patients With and Without Mild Traumatic Brain Injury. JAMA Neurol. 2016;73(5):551–560. PMID: 27018834. doi:10.1001/jamaneurol.2016.0039.; Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;75(20):1786–1793. PMID: 21079180. doi:10.1212/WNL.0b013e3181fd62d2.; Kassubek R, Gorges M, Schocke M, Hagenston VAM, Huss A, Ludolph AC, et al. GFAP in early multiple sclerosis: A biomarker for inflammation. Neurosci Lett. 2017;657:166–170. PMID: 28802830. doi:10.1016/j.neulet.2017.07.050.; Yoshida T, Nakagawa M. Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation. Neuropathology. 2012;32(4):440–446. PMID: 22118268. doi:10.1111/j.1440-1789.2011.01268.x.; Sellner J, Patel A, Dassan P, Brown MM, Petzold A. Hyperacute detection of neurofilament heavy chain in serum following stroke: a transient sign. Neurochem Res. 2011;36(12):2287–2291. PMID: 21792676. doi:10.1007/s11064-011-0553-8.; Marginean IC, Stanca DM, Vacaras V, Soritau O, Margiean M, Muresanu DF. Plasmatic markers in hemorrhagic stroke. J Med Life. 2011;4(2):148–150. PMID: 21776296.; Simani L, Elmi M, Asadollahi M. Serum GFAP level: A novel adjunctive diagnostic test in differentiate epileptic seizures from psychogenic attacks. Seizure. 2018;61:41–44. PMID: 30077862. doi:10.1016/j.seizure.2018.07.010.; Clairembault T, Kamphuis W, Leclair-Visonneau L, Rolli-Derkinderen M, Coron E, Neunlist M, et al. Enteric GFAP expression and phosphorylation in Parkinson’s disease. J Neurochem. 2014;130(6):805–815. PMID: 24749759. doi:10.1111/jnc.12742.; Misu T, Takano R, Fujihara K, Takahashi T, Sato S, Itoyama Y. Marked increase in cerebrospinal fluid glial fibrillar acidic protein in neuromyelitis optica: an astrocytic damage marker. J Neurol Neurosurg Psychiatry. 2009;80(5):575–577. PMID: 19372295. doi:10.1136/jnnp.2008.150698.; Foerch C, Curdt I, Yan B, Dvorak F, Hermans M, Berkefeld J, et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry. 2006;77(2):181–184. PMID: 16174653. doi:10.1136/jnnp.2005.074823.; Dvorak F, Haberer I, Sitzer M, Foerch C. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis. 2009;27(1):37–41. PMID: 19018136. doi:10.1159/000172632.; Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342(1–2):1–12. PMID: 15026262. doi:10.1016/j.cccn.2003.12.008.; Wunderlich MT, Wallesch CW, Goertler M. Release of glial fibrillary acidic protein is related to the neurovascular status in acute ischemic stroke. Eur J Neurol. 2006;13(10):1118–1123. PMID: 16987165. doi:10.1111/j.1468-1331.2006.01435.x.; van Bodegraven EJ, van Asperen JV, Robe PAJ, Hol EM. Importance of GFAP isoform-specific analyses in astrocytoma. Glia. 2019;67(8):1417–1433. PMID: 30667110. doi:10.1002/glia.23594.; Kaneda K, Fujita M, Yamashita S, Kaneko T, Kawamura Y, Izumi T, et al. Prognostic value of biochemical markers of brain damage and oxidative stress in post-surgical aneurysmal subarachnoid hemorrhage patients. Brain Res Bull. 2010;81(1):173–177. PMID: 19887101. doi:10.1016/j.brainresbull.2009.10.020.; Kedziora J, Burzynska M, Gozdzik W, Kübler A, Kobylinska K, Adamik B. Biomarkers of Neurological Outcome After Aneurysmal Subarachnoid Hemorrhage as Early Predictors at Discharge from an Intensive Care Unit. Neurocrit Care. 2021;34(3):856–866. PMID: 32978732. doi:10.1007/s12028-020-01110-2.; Vos PE, van Gils M, Beems T, Zimmerman C, Verbeek MM. Increased GFAP and S100beta but not NSE serum levels after subarachnoid haemorrhage are associated with clinical severity. Eur J Neurol. 2006;13(6):632–638. PMID: 16796588. doi:10.1111/j.1468-1331.2006.01332.x.; Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C, et al. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology. 2004;62(8):1303–1310. PMID: 15111666. doi:10.1212/01.wnl.0000120550.00643.dc.; van Geel WJ, de Reus HP, Nijzing H, Verbeek MM, Vos PE, Lamers KJ. Measurement of glial fibrillary acidic protein in blood: an analytical method. Clin Chim Acta. 2002;326(1–2):151–154. PMID: 12417106. doi:10.1016/s0009-8981(02)00330-3.; Jennett B, Snoek J, Bond MR, Brooks N. Disability after severe head injury: observations on the use of the Glasgow Outcome Scale. J Neurol Neurosurg Psychiatry. 1981;44(4):285–293. PMID: 6453957. doi:10.1136/jnnp.44.4.285.; Teasdale GM, Drake CG, Hunt W, Kassell N, Sano K, Pertuiset B, et al. A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry. 1988;51(11):1457. PMID: 3236024. doi:10.1136/jnnp.51.11.1457.; Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6(1):1–9. PMID: 7354892. doi:10.1227/00006123-198001000-00001.; Mabe H, Suzuki S, Mase M, Umemura A, Nagai H. Serum neuron-specific enolase levels after subarachnoid hemorrhage. Surg Neurol. 1991;36(3):170–174. PMID: 1876966. doi:10.1016/0090-3019(91)90108-l.; Hårdemark HG, Persson L, Bolander HG, Hillered L, Olsson Y, Påhlman S. Neuron-specific enolase is a marker of cerebral ischemia and infarct size in rat cerebrospinal fluid. Stroke. 1988;19(9):1140–1144. PMID: 3413812. doi:10.1161/01.str.19.9.1140.; Wiesmann M, Missler U, Hagenström H, Gottmann D. S-100 protein plasma levels after aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien). 1997;139(12):1155–1160. PMID: 9479422. doi:10.1007/BF01410976.; Mehta T, Fayyaz M, Giler GE, Kaur H, Raikwar SP, Kempuraj D, et al. Current Trends in Biomarkers for Traumatic Brain Injury. Open Access J Neurol Neurosurg. 2020;12(4):86–94. PMID: 32775958.; Herrmann M, Jost S, Kutz S, Ebert AD, Kratz T, Wunderlich MT, et al. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma. 2000;17(2):113–122. PMID: 10709869. doi:10.1089/neu.2000.17.113.; Rothoerl RD, Woertgen C, Holzschuh M, Metz C, Brawanski A. Rapid evaluation of S-100 serum levels. Case report and comparison to previous results. Brain Inj. 1999;13(5):387–391. PMID: 10367150. doi:10.1080/026990599121584.; Hårdemark HG, Almqvist O, Johansson T, Påhlman S, Persson L. S-100 protein in cerebrospinal fluid after aneurysmal subarachnoid haemorrhage: relation to functional outcome, late CT and SPECT changes, and signs of higher cortical dysfunction. Acta Neurochir (Wien). 1989;99(3–4):135–144. PMID: 2788973. doi:10.1007/BF01402322.; Dugan LL, Kim-Han JS. Astrocyte mitochondria in in vitro models of ischemia. J Bioenerg Biomembr. 200436(4):317–321. PMID: 15377865. doi:10.1023/B:JOBB.0000041761.61554.44.; Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 2006;86(3):1009–1031. PMID: 16816144. doi:10.1152/physrev.00049.2005.; Stranjalis G, Korfias S, Psachoulia C, Kouyialis A, Sakas DE, Mendelow AD. The prognostic value of serum S-100B protein in spontaneous subarachnoid haemorrhage. Acta Neurochir (Wien). 2007;149(3):231–237; dis. 237–238. PMID: 17242846. doi:10.1007/s00701-006-1106-9.; Olivecrona M, Koskinen LD. Comment on: Early CSF and serum S 100B concentrations for outcome prediction in traumatic brain injury and subarachoid haemorrhage. Clin Neurol Neurosurg. 2016;150:197–198. PMID: 27569027. doi:10.1016/j.clineuro.2016.07.026.; Tawk RG, Grewal SS, Heckman MG, Rawal B, Miller DA, Edmonston D, et al. The Relationship Between Serum Neuron-Specific Enolase Levels and Severity of Bleeding and Functional Outcomes in Patients With Nontraumatic Subarachnoid Hemorrhage. Neurosurgery. 2016;78(4):487–491. PMID: 26606669. doi:10.1227/NEU.0000000000001140.; Quintard H, Leduc S, Ferrari P, Petit I, Ichai C. Early and persistent high level of PS 100β is associated with increased poor neurological outcome in patients with SAH: is there a PS 100β threshold for SAH prognosis? Crit Care. 2016;20:33. PMID: 26843206. doi:10.1186/s13054-016-1200-1.; Abboud T, Mende KC, Jung R, Czorlich P, Vettorazzi E, Priefler M, et al. Prognostic Value of Early S100 Calcium Binding Protein B and Neuron-Specific Enolase in Patients with Poor-Grade Aneurysmal Subarachnoid Hemorrhage: A Pilot Study. World Neurosurg. 2017;108:669–675. PMID: 28943424. doi:10.1016/j.wneu.2017.09.074.; Nylén K, Csajbok LZ, Ost M, Rashid A, Blennow K, Nellgård B, et al. Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2007;38(5):1489–1494. PMID: 17395862. doi:10.1161/STROKEAHA.106.478362.; Balança B, Ritzenthaler T, Gobert F, Richet C, Bodonian C, Carrillon R, et al. Significance and Diagnostic Accuracy of Early S100B Serum Concentration after Aneurysmal Subarachnoid Hemorrhage. J Clin Med. 2020;9(6):1746. PMID: 32516898. doi:10.3390/jcm9061746.; Weiss N, Sanchez-Peña P, Roche S, Beaudeux JL, Colonne C, Coriat P, et al. Prognosis value of plasma S100B protein levels after subarachnoid aneurysmal hemorrhage. Anesthesiology. 2006;104(4):658–666. PMID: 16571959. doi:10.1097/00000542-200604000-00008.; Kopera M, Majchrzak H, Kaspera W. Prognostic factors in patients with intracerebral hematoma caused by ruptured middle cerebral artery aneurysm. Neurol Neurochir Pol. 1999;33(2):389–401. PMID: 10463253. (in Pol.); Edouard AR, Felten ML, Hebert JL, Cosson C, Martin L, Benhamou D. Incidence and significance of cardiac troponin I release in severe trauma patients. Anesthesiology. 2004;101(6):1262–1268. PMID: 15564931. doi:10.1097/00000542-200412000-00004.; Macrea LM, Tramèr MR, Walder B. Spontaneous subarachnoid hemorrhage and serious cardiopulmonary dysfunction – a systematic review. Resuscitation. 2005;65(2):139–148. PMID: 15866393. doi:10.1016/j.resuscitation.2004.11.010.; Miss JC, Kopelnik A, Fisher LA, Tung PP, Banki NM, Lawton MT, et al. Cardiac injury after subarachnoid hemorrhage is independent of the type of aneurysm therapy. Neurosurgery. 2004;55(6):1244–1250; dis. 1250–1251. PMID: 15574206. doi:10.1227/01.neu.0000143165.50444.7f.; Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet. 2002;360(9342):1267–1274. PMID: 12414200. doi:10.1016/s0140-6736(02)11314-6.; Raabe A, Kopetsch O, Woszczyk A, Lang J, Gerlach R, Zimmermann M, et al. S-100B protein as a serum marker of secondary neurological complications in neurocritical care patients. Neurol Res. 2004;26(4):440–445. PMID: 15198874. doi:10.1179/016164104225015958.; Usui A, Kato K, Abe T, Murase M, Tanaka M, Takeuchi E. S-100ao protein in blood and urine during open-heart surgery. Clin Chem. 1989;35(9):1942–1944. PMID: 2776321.; Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24(8):916–925. PMID: 15362722. doi:10.1097/01.WCB.0000125886.48838.7E.; Heierhorst J, Kobe B, Feil SC, Parker MW, Benian GM, Weiss KR, et al. Ca 2+ /S100 regulation of giant protein kinases. Nature. 1996;380(6575):636–639. PMID: 8602266. doi:10.1038/380636a0.; Hullin DA, Brown K, Kynoch PA, Smith C, Thompson RJ. Purification, radioimmunoassay, and distribution of human brain 14-3-2 protein (nervous-system specific enolase) in human tissues. Biochim Biophys Acta. 1980;628(1):98–108. PMID: 7357031. doi:10.1016/0304-4165(80)90355-4.; Pelinka LE, Hertz H, Mauritz W, Harada N, Jafarmadar M, Albrecht M, et al. Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings. Shock. 2005;24(2):119–123. PMID: 16044081. doi:10.1097/01.shk.0000168876.68154.43.; Sanchez-Peña P, Pereira AR, Sourour NA, Biondi A, Lejean L, Colonne C, et al. S100B as an additional prognostic marker in subarachnoid aneurysmal hemorrhage. Crit Care Med. 2008;36(8):2267–2273. PMID: 18596638. doi:10.1097/CCM.0b013e3181809750.; Ramont L, Thoannes H, Volondat A, Chastang F, Millet MC, Maquart FX. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med. 2005;43(11):1215–1217. PMID: 16232088. doi:10.1515/CCLM.2005.210.; Oertel M, Schumacher U, McArthur DL, Kästner S, Böker DK. S-100B and NSE: markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J Clin Neurosci. 2006;13(8):834–840. PMID: 16931022. doi:10.1016/j.jocn.2005.11.030.; Lefranc F, Golzarian J, Chevalier C, DeWitte O, Pochet R, Heizman C, et al. Expression of members of the calcium-binding S-100 protein family in a rat model of cerebral basilar artery vasospasm. J Neurosurg. 2002;97(2):408–415. PMID: 12186470. doi:10.3171/jns.2002.97.2.0408.; Kassell NF, Sasaki T, Colohan AR, Nazar G. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke. 1985;16(4):562–572. PMID: 3895589. doi:10.1161/01.str.16.4.562.; Lefournier V, Krainik A, Gory B, Derderian F, Bessou P, Fauvage B, et al. Perfusion CT to quantify the cerebral vasospasm following subarachnoid hemorrhage. J Neuroradiol. 2010;37(5):284–291. PMID: 20416949. doi:10.1016/j.neurad.2010.03.003.; Sun H, Li W, Ma J, Liu Y, You C. CT perfusion diagnoses delayed cerebral ischemia in the early stage of the time-window after aneurysmal subarachnoid hemorrhage. J Neuroradiol. 2017;44(5):313–318. PMID: 28237366. doi:10.1016/j.neurad.2016.12.013.; Перенести в английский вариант; Skvortsova VI, Stakhovskaya LV, Ayriyan NYu. Epidemiologiya insul’ta v Rossiyskoy Federatsii. Systemic Hypertension. 2005;(1):10–12. (In Russ.); Davydov VV, Komarov OS; Shestopalov AV (ed.). Biokhimiya nervnoy tkani. Moscow: Belyy veter Publ.; 2018. (in Russ.); Sosnovskiy AYu. Primenenie markera proteina S100 B v diagnostike i prognozirovanii iskhodov lecheniya cherepno-mozgovoy travmy : cand. med. sci. diss. synopsis. Moscow, 2014. (In Russ.) Available at: https://search.rsl.ru/ru/record/01005557615 [Accessed Dec 15, 2023]; Topuzova MP, Alekseeva TM, Panina EB, Vavilova TV, Kovzelev PD, Portik OA, et al. The possibility of using neuron-specific enolase as a biomarker in the acute period of stroke. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2019;119(8–2):53–62. (In Russ.) doi:10.17116/jnevro201911908253; https://www.jnmp.ru/jour/article/view/1726
-
8
Autori: a ďalší
Zdroj: Ophthalmology in Russia; Том 21, № 1 (2024); 23-34 ; Офтальмология; Том 21, № 1 (2024); 23-34 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-1
Predmety: прогностические факторы, cataract surgery, antiangiogenic drugs, prognostic factors, хирургия катаракты, антиангиогенные препараты
Popis súboru: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/2289/1184; Чистякова НВ, Даль НЮ, Лисочкина AБ. Влияние хирургии катаракты на развитие и прогрессирование возрастной макулярной дегенерации. Офтальмологические ведомости. 2010;3(4):42–45.; Alio JL, Plaza-Puche AB, Férnandez-Buenaga R, Pikkel J, Maldonado M. Multifocal intraocular lenses: An overview. Surv Ophthalmol. 2017 Sep-Oct;62(5):611–634. doi:10.1016/j.survophthal.2017.03.005.; Фадеева ТВ. Влияние хирургии катаракты на появление поздних стадий возрастной макулярной дегенерации. Российская офтальмология онлайн. Катаракта. Практикующему врачу. 2020;11. OAI-PMH ID: oai:eyepress.ru:article11988; Bandyopadhyay S, Saha M, Chakrabarti A, Sinha A. Effect on contrast sensitivity after clear, yellow and orange intraocular lens implantation. Int Ophthalmol. 2016 Jun;36(3):313–318. doi:10.1007/s10792-015-0120-4.; Akansha EO, Bui BV, Ganeshrao SB, Bakthavatchalam P, Gopalakrishnan S, Mattam S, Poojary RR, Jathanna JS, Jose J, Theruveethi NN. Blue-Light-Blocking Lenses Ameliorate Structural Alterations in the Rodent Hippocampus. Int J Environ Res Public Health. 2022 Oct 9;19(19):12922. doi:10.3390/ijerph191912922.; Bhandari S, Vitale S, Agrón E, Clemons TE, Chew EY; Age-Related Eye Disease Study 2 Research Group. Cataract Surgery and the Risk of Developing Late Age-Related Macular Degeneration: The Age-Related Eye Disease Study 2 Report Number 27. Ophthalmology. 2022 Apr;129(4):414–420. doi:10.1016/j.ophtha.2021.11.014.; Bjerager J, van Dijk EHC, Holm LM, Singh A, Subhi Y. Previous intravitreal injection as a risk factor of posterior capsule rupture in cataract surgery: a systematic review and meta-analysis. Acta Ophthalmol. 2022 Sep;100(6):614–623. doi:10.1111/aos.15089.; Bloch SB, Larsen M, Munch IC. Incidence of legal blindness from agerelated mauclar degeneration in Denmark: year 2000 to 2010. Am J Ophthalmol. 2012;153:209213.e2. doi:10.1016/j.ajo.2011.10.016.; Brøndsted AE, Haargaard B, Sander B, Lund-Andersen H, Jennum P, Kessel L. The effect of blue-blocking and neutral intraocular lenses on circadian photoentrainment and sleep one year after cataract surgery. Acta Ophthalmol. 2017 Jun;95(4):344–351. doi:10.1111/aos.13323.; Ozulken K, Kiziltoprak H, Yuksel E, Mumcuoğlu T. A Comparative Evaluation of Diffractive Trifocal and New Refractive/Extended Depth of Focus Intraocular Lenses for Refractive Lens Exchange. Curr Eye Res. 2021 Jun;46(6):811–817. doi:10.1080/02713683.2020.1833347.; Velez-Montoya R, Sanchez-Santos I, Galvan-Chavez M, Wu L, Arevalo JF, Berrocal MH, Alezzandrini AA, Figueroa MS, Gallego-Pinazo R, Dolz-Marco R, MartinezRubio C, Gonzalez-Salinas R. Risk of Posterior Capsular Rupture during Phacoemulsification in Patients with the History of Anti-VEGF Intravitreal Injections: Results from the Pan-American Collaborative Retina Study (PACORES) Group. J Ophthalmol. 2021 Oct 11;2021:5591865. doi:10.1155/2021/5591865.; Kleinmann G, Hoffman P, Schechtman E, Pollack A. Microscope-induced retinal phototoxicity in cataract surgery of short duration. Ophthalmology. 2002 Feb;109(2):334–338. doi:10.1016/s0161-6420(01)00924-1.; Wolffe M. How safe is the light during ophthalmic diagnosis and surgery. Eye (Lond). 2016 Feb;30(2):186–188. doi:10.1038/eye.2015.247.; Avetisov SE, Sheremet NL, Muranov KO, Polyansky NB. Experimental study of the influence of damaging factors and chaperone-like drugs on cataractogenesis. Bulletin of Ophthalmology. 2013;5:154–158.; Westborg I, Albrecht S, Granstam E, Karlsson N, Kugelberg M, Lundström M, Montan P, Behndig A. Treatment of age-related macular degeneration after cataract surgery: a study from the Swedish National Cataract and Macula Registers. Acta Ophthalmol. 2021 Feb;99(1):e124–e129. doi:10.1111/aos.14519.; Reinhard T, Maier P, Böhringer D, Bertelmann E, Brockmann T, Kiraly L, Salom D, Piovella M, Colonval S, Mendicute J. Comparison of two extended depth of focus intraocular lenses with a monofocal lens: a multi-centre randomised trial. Graefes Arch Clin Exp Ophthalmol. 2021 Feb;259(2):431–442. doi:10.1007/s00417-020-04868-5.; Hahn P, Yashkin AP, Sloan FA. Effect of Prior Anti-VEGF Injections on the Risk of Retained Lens Fragments and Endophthalmitis after Cataract Surgery in the Elderly. Ophthalmology. 2016 Feb;123(2):309–315. doi:10.1016/j.ophtha.2015.06.040.; Rosenfeld PJ, Shapiro H, Ehrlich JS, Wong P, MARINA and ANCHOR study groups. Cataract surgery in ranibizumab-treated patients with neovascular agerelated macular degeneration from the phase 3 ANCHOR and MARINA trials. Am J Ophthalmol. 2011;152:793–798. doi:10.1016/j.ajo.2011.04.025.; Casparis H, Lindsley K, Kuo IC, Sikder S, Bressler NM. Surgery for cataracts in people with age-related macular degeneration. Cochrane Database Syst Rev. 2017;2(2):CD006757. doi:10.1002/14651858.CD006757.; Sparrow JR, Miller AS, Zhou J. Blue light-absorbing intraocular lens and retinal pigment epithelium protection in vitro. J Cataract Refract Surg. 2004 Apr;30(4):873– 878. doi:10.1016/j.jcrs.2004.01.031.; Kaiserman I, Kaiserman N, Elhayany A, Vinker S. Cataract surgery is associated with a higher rate of photodynamic therapy for age-related macular degeneration. Ophthalmology. 2007 Feb;114(2):278–282. doi:10.1016/j.ophtha.2006.10.019.; Lazreg S, Delcourt C, Zeggane S, Sanchez A, Ziani A, Daghbouche M, Benmoussa S, Mokrani K, Billah Mekki M, Renault D, Battaglia Parodi M, Bandello F, Nouri MT. Age-Related Macular Degeneration and Its Risk Factors in North Africans Living in Algeria and Italy. Ophthalmic Res. 2016;56(3):145–154. doi:10.1159/000446844.; Leung TW, Li RW, Kee CS. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances. PLoS One. 2017 Jan 3;12(1):e0169114. doi:10.1371/journal.pone.0169114.; Buchan JC, Donachie PHJ, Cassels-Brown A, Liu C, Pyott A, Yip JLY, Zarei-Ghanavati M, Sparrow JM. The Royal College of Ophthalmologists’ National Ophthalmology Database study of cataract surgery: Report 7, immediate sequential bilateral cataract surgery in the UK: Current practice and patient selection. Eye (Lond). 2020 Oct;34(10):1866–1874. doi:10.1038/s41433-019-0761-z.; Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR. Global causes of blindness and distance vision impairment 1990–2020: a sys tematic review and meta-analysis. Lancet Global Health. 2017;5:e1221–1234. doi:10.1016/S2214-109X(17)30393-5.; Grzybowski A, Wang J, Mao F, Wang D, Wang N. Intraocular vision-improving devices in age-related macular degeneration. Ann Transl Med. 2020 Nov;8(22):1549. doi:10.21037/atm-20-5851.; Theruveethi N, Bui BV, Joshi MB, Valiathan M, Ganeshrao SB, Gopalakrishnan S, Kabekkodu SP, Bhat SS, Surendran S. Blue Light-Induced Retinal Neuronal Injury and Amelioration by Commercially Available Blue Light-Blocking Lenses. Life (Basel). 2022 Feb 7;12(2):243. doi:10.3390/life12020243.; Downie LE, Wormald R, Evans J, Virgili G, Keller PR, Lawrenson JG, Li T. Analysis of a Systematic Review About Blue Light-Filtering Intraocular Lenses for Retinal Protection: Understanding the Limitations of the Evidence. JAMA Ophthalmol. 2019 Jun 1;137(6):694–697. doi:10.1001/jamaophthalmol.2019.0019.; Liu Y, Zhao J, Hu Y, Li B, Wang J, Zhang J. Comparison of the Visual Performance after Implantation of Three Aberration-correcting Aspherical Intraocular Lens. Curr Eye Res. 2021 Mar;46(3):333–340. doi:10.1080/02713683.2020.1798467.; Buschini E, Piras A, Nuzzi R, Vercelli A. Age related macular degeneration and drusen: neuroinflammation in the retina. Prog Neurobiol. 2011 Sep 15;95(1):14–25. doi:10.1016/j.pneurobio.2011.05.011.; Rim TH, Lee CS, Lee SC, Kim S, Kim SS; Epidemiologic Survey Committee Of The Korean Ophthalmological Society. Association between Previous Cataract Surgery and Age-Related Macular Degeneration. Semin Ophthalmol. 2017;32(4):466–473. doi:10.3109/08820538.2015.1119861.; Chen J, Smith LE. Protective inflammasome activation in AMD. Nat Med. 2012 May 4;18(5):658–660. doi:10.1038/nm.2761.; Jia X, Wei Y, Song H. Optical coherence tomography angiography evaluation of the effects of phacoemulsification cataract surgery on macular hemodynamics in Chinese normal eyes. Int Ophthalmol. 2021 Dec;41(12):4175–4185. doi:10.1007/s10792-021-01987-8.; Cheng CY, Yamashiro K, Chen LJ, Ahn J, Huang L, Huang L, Cheung CM, Miyake M, Cackett PD, Yeo IY, Laude A, Mathur R, Pang J, Sim KS, Koh AH, Chen P, Lee SY, Wong D, Chan CM, Loh BK, Sun Y, Davila S, Nakata I, Nakanishi H, AkagiKurashige Y, Gotoh N, Tsujikawa A, Matsuda F, Mori K, Yoneya S, Sakurada Y, Iijima H, Iida T, Honda S, Lai TY, Tam PO, Chen H, Tang S, Ding X, Wen F, Lu F, Zhang X, Shi Y, Zhao P, Zhao B, Sang J, Gong B, Dorajoo R, Yuan JM, Koh WP, van Dam RM, Friedlander Y, Lin Y, Hibberd ML, Foo JN, Wang N, Wong CH, Tan GS, Park SJ, Bhargava M, Gopal L, Naing T, Liao J, Ong PG, Mitchell P, Zhou P, Xie X, Liang J, Mei J, Jin X, Saw SM, Ozaki M, Mizoguchi T, Kurimoto Y, Woo SJ, Chung H, Yu HG, Shin JY, Park DH, Kim IT, Chang W, Sagong M, Lee SJ, Kim HW, Lee JE, Li Y, Liu J, Teo YY, Heng CK, Lim TH, Yang SK, Song K, Vithana EN, Aung T, Bei JX, Zeng YX, Tai ES, Li XX, Yang Z, Park KH, Pang CP, Yoshimura N, Wong TY, Khor CC. New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nat Commun. 2015 Jan 28;6:6063. doi:10.1038/ncomms7063. Erratum in: Nat Commun. 2015;6:6817.; Wang JJ, Fong CS, Rochtchina E, Cugati S, de Loryn T, Kaushik S, Tan JS, Arnold J, Smith W, Mitchell P. Risk of age-related macular degeneration 3 years after cataract surgery: paired eye comparisons. Ophthalmology. 2012 Nov;119(11):2298–2303. doi:10.1016/j.ophtha.2012.07.003.; Ho JD, Xirasagar S, Kao LT, Lin HC. Neovascular age-related macular degeneration is associated with cataract surgery. Acta Ophthalmol. 2018 Mar;96(2):e213–e217. doi:10.1111/aos.13511.; Chen Z, Zeng Y, Tian F. Effect of cataract surgery on the progression of age-related macular degeneration. Medicine (Baltimore). 2022 Nov 4;101(44):e31566. doi:10.1097/MD.0000000000031566.; Yang L, Li H, Zhao X, Pan Y. Association between Cataract Surgery and Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. J Ophthalmol. 2022 May 5;2022:6780901. doi:10.1155/2022/6780901.; Ferris FL, Davis MD, Clemons TE, Lee LY, Chew EY, Lindblad AS, Milton RC, Bressler SB, Klein R; Age-Related Eye Disease Study (AREDS) Research Group. A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol. 2005 Nov;123(11):1570–1574. doi:10.1001/archopht.123.11.1570.; Klein BE, Klein RE, Lee KE. Incident cataract after a five-year interval and lifestyle factors: the Beaver Dam eye study. Ophthalmic Epidemiol. 1999 Dec;6(4):247–255. doi:10.1076/opep.6.4.247.4190.; Liu IY, White L, LaCroix AZ. The association of age-related macular degeneration and lens opacities in the aged. Am J Public Health. 1989 Jun;79(6):765–769. doi:10.2105/ajph.79.6.765.; Klein R, Klein BE, Wong TY, Tomany SC, Cruickshanks KJ. The association of cataract and cataract surgery with the long-term incidence of age-related maculopathy: the Beaver Dam eye study. Arch Ophthalmol. 2002 Nov;120(11):1551–1558. doi:10.1001/archopht.120.11.1551.; https://www.ophthalmojournal.com/opht/article/view/2289
-
9
Autori: a ďalší
Zdroj: TRAUMA; Том 19, № 4 (2018); 78-83
ТРАВМА; Том 19, № 4 (2018); 78-83Predmety: 03 medical and health sciences, 0302 clinical medicine, non-steroidal anti-inflammatory drugs, neurocompressive pain syndrome, predictive factors, нестероидные противовоспалительные препараты, нейрокомпрессионный болевой синдром, прогностические факторы, нестероїдні протизапальні препарати, нейрокомпресійний больовий синдром, прогностичні фактори, 3. Good health
Popis súboru: application/pdf
-
10
Autori: Tovma, A.V.
Zdroj: Zdorovʹe Rebenka, Vol 14, Iss 4, Pp 225-228 (2019)
CHILD`S HEALTH; Том 14, № 4 (2019); 225-228
Здоровье ребенка-Zdorovʹe rebenka; Том 14, № 4 (2019); 225-228
Здоров'я дитини-Zdorovʹe rebenka; Том 14, № 4 (2019); 225-228Predmety: підлітки, первинна гіпертензія, ремоделювання лівого шлуночка, прогностичні фактори, left ventricular remodeling, подростки, первичная гипертензия, ремоделирование левого желудочка, прогностические факторы, predictive factors, essential hypertension, adolescents, Pediatrics, RJ1-570, 3. Good health
Popis súboru: application/pdf
-
11
Zdroj: Наука и здравоохранение. :17-26
-
12
-
13
Autori: a ďalší
Zdroj: Siberian journal of oncology; Том 22, № 2 (2023); 56-64 ; Сибирский онкологический журнал; Том 22, № 2 (2023); 56-64 ; 2312-3168 ; 1814-4861
Predmety: легочный иммунный прогностический индекс LIPI, prognostic factors, immunotherapy, lung immune prognostic index LIPI, прогностические факторы, иммунотерапия
Popis súboru: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2529/1095; Horn L., Spigel D.R., Vokes E.E., Holgado E., Ready N., Steins M., Poddubskaya E., Borghaei H., Felip E., Paz-Ares L., Pluzanski A., Reckamp K.L., Burgio M.A., Kohlhäeuf M., Waterhouse D., Barlesi F., Antonia S., Arrieta O., Fayette J., Crinò L., Rizvi N., Reck M., Hellmann M.D., Geese W.J., Li A., Blackwood-Chirchir A., Healey D., Brahmer J., Eberhardt W.E.E. Nivolumab Versus Docetaxel in Previously Treated Patients With Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). J Clin Oncol. 2017; 35(35): 3924–33. doi:10.1200/JCO.2017.74.3062.; Antonia S.J., Borghaei H., Ramalingam S.S., Horn L., De Castro Carpeño J., Pluzanski A., Burgio M.A., Garassino M., Chow L.Q.M., Gettinger S., Crinò L., Planchard D., Butts C., Drilon A., Wojcik-Tomaszewska J., Otterson G.A., Agrawal S., Li A., Penrod J.R., Brahmer J. Fouryear survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: a pooled analysis. Lancet Oncol. 2019; 20(10): 1395–1408. doi:10.1016/S1470-2045(19)30407-3.; Herbst R.S., Baas P., Kim D.W., Felip E., Pérez-Gracia J.L., Han J.Y., Molina J., Kim J.H., Arvis C.D., Ahn M.J., Majem M., Fidler M.J., de Castro G. Jr., Garrido M., Lubiniecki G.M., Shentu Y., Im E., DolledFilhart M., Garon E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE010): a randomised controlled trial. Lancet. 2016; 387(10027): 1540–50. doi:10.1016/S0140-6736(15)01281-7.; Rittmeyer A., Barlesi F., Waterkamp D., Park K., Ciardiello F., von Pawel J., Gadgeel S.M., Hida T., Kowalski D.M., Dols M.C., Cortinovis D.L., Leach J., Polikoff J., Barrios C., Kabbinavar F., Frontera O.A., De Marinis F., Turna H., Lee J.S., Ballinger M., Kowanetz M., He P., Chen D.S., Sandler A., Gandara D.R.; OAK Study Group. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017; 389(10066): 255–65. doi:10.1016/S0140-6736-(16)32517-X. Erratum in: Lancet. 2017; 389(10077): e5.; Reck M., Rodríguez-Abreu D., Robinson A.G., Hui R., Csőszi T., Fülöp A., Gottfried M., Peled N., Tafreshi A., Cuffe S., O’Brien M., Rao S., Hotta K., Leal T.A., Riess J.W., Jensen E., Zhao B., Pietanza M.C., Brahmer J.R. Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥ 50. J Clin Oncol. 2021; 39(21): 2339–49. doi:10.1200/JCO.21.00174.; Garon E.B., Hellmann M.D., Rizvi N.A., Carcereny E., Leighl N.B., Ahn M.J., Eder J.P., Balmanoukian A.S., Aggarwal C., Horn L., Patnaik A., Gubens M., Ramalingam S.S., Felip E., Goldman J.W., Scalzo C., Jensen E., Kush D.A., Hui R. Five-Year Overall Survival for Patients With Advanced Non‒Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. J Clin Oncol. 2019; 37(28): 2518–27. doi:10.1200/JCO.19.00934.; Herbst R.S., Giaccone G., de Marinis F., Reinmuth N., Vergnenegre A., Barrios C.H., Morise M., Felip E., Andric Z., Geater S., Özgüroğlu M., Zou W., Sandler A., Enquist I., Komatsubara K., Deng Y., Kuriki H., Wen X., McCleland M., Mocci S., Jassem J., Spigel D.R. Atezolizumab for FirstLine Treatment of PD-L1-Selected Patients with NSCLC. N Engl J Med. 2020; 383(14): 1328–39. doi:10.1056/NEJMoa1917346.; Lin A., Wei T., Meng H., Luo P., Zhang J. Role of the dynamic tumor microenvironment in controversies regarding immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) with EGFR mutations. Mol Cancer. 2019; 18(1): 139. doi:10.1186/s12943-019-1062-7.; Hellmann M.D., Ciuleanu T.E., Pluzanski A., Lee J.S., Otterson G.A., Audigier-Valette C., Minenza E., Linardou H., Burgers S., Salman P., Borghaei H., Ramalingam S.S., Brahmer J., Reck M., O’Byrne K.J., Geese W.J., Green G., Chang H., Szustakowski J., Bhagavatheeswaran P., Healey D., Fu Y., Nathan F., Paz-Ares L. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med. 2018; 378(22): 2093–2104. doi:10.1056/NEJMoa1801946.; Vanderwalde A., Spetzler D., Xiao N., Gatalica Z., Marshall J. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018; 7(3): 746–56. doi:10.1002/cam4.1372. Erratum in: Cancer Med. 2018; 7(6): 2792.; Socinski M.A., Jotte R.M., Cappuzzo F., Nishio M., Mok T.S., Reck M., Finley G., Yu W., Patel H. Paranthaman N., Bara I., West H. Pooled analyses of immune-related adverse events (irAEs) and efcacy from the phase 3 trials IMpower130, IMpower132, and IMpower150. J Clin Oncol. 2021; 39(Suppl_15). doi:10.1200/JCO.2021.39.15_suppl.9002.; Wang Z., Zhan P., Lv Y., Shen K., Wei Y., Liu H., Song Y. Prognostic role of pretreatment neutrophil-to-lymphocyte ratio in non-small cell lung cancer patients treated with systemic therapy: a meta-analysis. Transl Lung Cancer Res. 2019; 8(3): 214–26. doi:10.21037/tlcr.2019.06.10.; Tong T., Guan Y., Xiong H., Wang L., Pang J. A Meta-Analysis of Glasgow Prognostic Score and Modifed Glasgow Prognostic Score as Biomarkers for Predicting Survival Outcome in Renal Cell Carcinoma. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.01541.; Banna G.L., Cortellini A., Cortinovis D.L., Tiseo M., Aerts J.G.J.V., Barbieri F., Giusti R., Bria E., Grossi F., Pizzutilo P., Berardi R., Mora bito A., Genova C., Mazzoni F., Di Noia V., Signorelli D., Gelibter A., Macerelli M., Rastelli F., Chiari R., Rocco D., Gori S., De Tursi M., Di Marino P., Mansueto G., Zoratto F., Filetti M., Montrone M., Citarella F., Marco R., Cantini L., Nigro O., D’Argento E., Buti S., Minuti G., Landi L., Guaitoli G., Lo Russo G., De Toma A., Donisi C., Friedlaender A., De Giglio A., Metro G., Porzio G., Ficorella C., Addeo A. The lung immuno-oncology prognostic score (LIPS-3): a prognostic classifcation of patients receiving frst-line pembrolizumab for PD-L1 ≥ 50 % advanced non-small-cell lung cancer. ESMO Open. 2021; 6(2). doi:10.1016/j.esmoop.2021.100078. Erratum in: ESMO Open. 2021; 6(3).; Lenci E., Cantini L., Pecci F., Cognigni V., Agostinelli V., Mentrasti G., Lupi A., Ranallo N., Paoloni F., Rinaldi S., Nicolardi L., Caglio A., Aerts S., Cortellini A., Ficorella C., Chiari R., Di Maio M., Dingemans A.C., Aerts J.G.J.V., Berardi R. The Gustave Roussy Immune (GRIm)-Score Variation Is an Early-on-Treatment Biomarker of Outcome in Advanced Non-Small Cell Lung Cancer (NSCLC) Patients Treated with FirstLine Pembrolizumab. J Clin Med. 2021; 10(5): 1005. doi:10.3390/jcm10051005.; Mezquita L., Auclin E., Ferrara R., Charrier M., Remon J., Planchard D., Ponce S., Ares L.P., Leroy L., Audigier-Valette C., Felip E., Zerón-Medina J., Garrido P., Brosseau S., Zalcman G., Mazieres J., Caramela C., Lahmar J., Adam J., Chaput N., Soria J.C., Besse B. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2018; 4(3): 351–7. doi:10.1001/jamaoncol.2017.4771.; Meyers D.E., Stukalin I., Vallerand I.A., Lewinson R.T., Suo A., Dean M., North S., Pabani A., Cheng T., Heng D.Y.C., Bebb D.G., Morris D.G. The Lung Immune Prognostic Index Discriminates Survival Outcomes in Patients with Solid Tumors Treated with Immune Checkpoint Inhibitors. Cancers (Basel). 2019; 11(11): 1713. doi:10.3390/cancers11111713.; Kazandjian D., Gong Y., Keegan P., Pazdur R., Blumenthal G.M. Prognostic Value of the Lung Immune Prognostic Index for Patients Treated for Metastatic Non-Small Cell Lung Cancer. JAMA Oncol. 2019; 5(10): 1481–5. doi:10.1001/jamaoncol.2019.1747.; Ruiz-Bañobre J., Areses-Manrique M.C., Mosquera-Martínez J., Cortegoso A., Afonso-Afonso F.J., de Dios-Álvarez N., Fernández-Núñez N., Azpitarte-Raposeiras C., Amenedo M., Santomé L., Fírvida-Pérez J.L., García-Campelo R., García-González J., Casal-Rubio J., Vázquez S. Evaluation of the lung immune prognostic index in advanced non-small cell lung cancer patients under nivolumab monotherapy. Transl Lung Cancer Res. 2019; 8(6): 1078–85. doi:10.21037/tlcr.2019.11.07.; Sorich M.J., Rowland A., Karapetis C.S., Hopkins A.M. Evaluation of the Lung Immune Prognostic Index for Prediction of Survival and Response in Patients Treated With Atezolizumab for NSCLC: Pooled Analysis of Clinical Trials. J Thorac Oncol. 2019; 14(8): 1440–6. doi:10.1016/j.jtho.2019.04.006.; Benitez J.C., Recondo G., Rassy E., Mezquita L. The LIPI score and infammatory biomarkers for selection of patients with solid tumors treated with checkpoint inhibitors. Q J Nucl Med Mol Imaging. 2020; 64(2): 162–74. doi:10.23736/S1824-4785.20.03250-1.; Huang L., Han H., Zhou L., Chen X., Xu Q., Xie J., Zhan P., Chen S., Lv T., Song Y. Evaluation of the Lung Immune Prognostic Index in Non-Small Cell Lung Cancer Patients Treated With Systemic Therapy: A Retrospective Study and Meta-Analysis. Front Oncol. 2021; 11. doi:10.3389/fonc.2021.670230.; Chen C., Song Z., Wang W., Zhou J. Baseline anemia and anemia grade are independent prognostic factors for stage IV non-small cell lung cancer. Mol Clin Oncol. 2021; 14(3): 59. doi:10.3892/mco.2021.2221.; Huang Y., Su C., Jiang H., Liu F., Yu Q., Zhou S. The Association between Pretreatment anemia and Overall Survival in Advanced Non-small Cell lung Cancer: A Retrospective Cohort Study Using Propensity Score Matching. J Cancer. 2022; 13(1): 51–61. doi:10.7150/jca.55159.; Yu D., Liu B., Zhang L., DU K. Platelet count predicts prognosis in operable non-small cell lung cancer. Exp Ther Med. 2013; 5(5): 1351–4. doi:10.3892/etm.2013.1003.; Mitsui S., Tanaka Y., Doi T., Hokka D., Maniwa Y. Prognostic value of preoperative plasma fibrinogen levels in resected stage I non-small cell lung cancer. Thorac Cancer. 2022; 13(10): 1490–5. doi:10.1111/1759-7714.14419.; Eisenhauer E.A., Therasse P., Bogaerts J., Schwartz L.H., Sargent D., Ford R., Dancey J., Arbuck S., Gwyther S., Mooney M., Rubinstein L., Shankar L., Dodd L., Kaplan R., Lacombe D., Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009; 45(2): 228–47. doi:10.1016/j.ejca.2008.10.026.; Xie J., Zang Y., Liu M., Peng L., Zhang H. The Lung Immune Prognostic Index May Predict the Efcacy of Diferent Treatments in Patients with Advanced NSCLC: A Meta-Analysis. Oncol Res Treat. 2021; 44(4): 164–75. doi:10.1159/000514443.; Balkwill F.R., Mantovani A. Cancer-related infammation: common themes and therapeutic opportunities. Semin Cancer Biol. 2012; 22(1): 33–40. doi:10.1016/j.semcancer.2011.12.005.; Greten F.R., Grivennikov S.I. Infammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity. 2019; 51(1): 27–41. doi:10.1016/j.immuni.2019.06.025.; Scilla K.A., Bentzen S.M., Lam V.K., Mohindra P., Nichols E.M., Vyfhuis M.A., Bhooshan N., Feigenberg S.J., Edelman M.J., Feliciano J.L. Neutrophil-Lymphocyte Ratio Is a Prognostic Marker in Patients with Locally Advanced (Stage IIIA and IIIB) Non-Small Cell Lung Cancer Treated with Combined Modality Therapy. Oncologist. 2017; 22(6): 737–42. doi:10.1634/theoncologist.2016-0443.; Takada K., Takamori S., Yoneshima Y., Tanaka K., Okamoto I., Shimokawa M., Oba T., Osoegawa A., Tagawa T., Takenoyama M., Oda Y., Nakanishi Y., Mori M. Serum markers associated with treatment response and survival in non-small cell lung cancer patients treated with anti-PD-1 therapy. Lung Cancer. 2020; 145: 18–26. doi:10.1016/j.lungcan.2020.04.034.; Ding J., Karp J.E., Emadi A. Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: Interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomark. 2017; 19(4): 353–63. doi:10.3233/CBM-160336.; Liu R., Cao J., Gao X., Zhang J., Wang L., Wang B., Guo L., Hu X., Wang Z. Overall survival of cancer patients with serum lactate dehydrogenase greater than 1000 IU/L. Tumour Biol. 2016; 37(10): 14083–8. doi:10.1007/s13277-016-5228-2.; https://www.siboncoj.ru/jour/article/view/2529
-
14
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Rheumatology Science and Practice; Vol 61, No 5 (2023); 584-589 ; Научно-практическая ревматология; Vol 61, No 5 (2023); 584-589 ; 1995-4492 ; 1995-4484
Predmety: прогностические факторы, remi ssion, low disease activity, prognostic factors, ремиссия, низкая активность заболевания
Popis súboru: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3441/2320; Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N Engl J Med. 2017;378(10):957-970. doi:10.1056/NEJMra1505557; Coates LC, Soriano ER, Corp N, Bertheussen H, Callis Duffin K, Campanholo CB, et al.; GRAPPA Treatment Recommendations domain subcommittees. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA): Updated treatment recommendations for psoriatic arthritis 2021. Nat Rev Rheumatol. 2022;18(8):465-479. doi:10.1038/s41584-022-00798-0; Kavanaugh A, Helliwell P, Ritchlin CT. Psoriatic arthritis and burden of disease: Patient perspectives from the population-based Multinational Assessment of Psoriasis and Psoriatic Arthritis (MAPP) survey. Rheumatol Ther. 2016;3(1):91-102. doi:10.1007/s40744-016-0029-z; de Vlam K, Steinfeld S, Toukap AN, van den Bosch F, Joos R, Geysens P, et al.; BEPAS Study Investigators. The burden of psoriatic arthritis in the biologics era: Data from the Belgian Epidemiological Psoriatic Arthritis Study. Rheumatology (Oxford). 2021;60(12):5677-5685. doi:10.1093/rheumatology/keab233; Zardin-Moraes M, da Silva ALFA, Saldanha C, Kohem CL, Coates LC, Henrique LR, et al. Prevalence of psoriatic arthritis patients achieving minimal disease activity in real-world studies and randomized clinical trials: Systematic review with metaanalysis. J Rheumatol. 2020;47(6):839-846. doi:10.3899/jrheum.190677; Ng BCK, Jadon DR. Unmet needs in psoriatic arthritis. Best Pract Res Clin Rheumatol. 2021;35(2):101693. doi:10.1016/j.berh.2021.101693; Tucker LJ, Coates LC, Helliwell PS. Assessing disease activity in psoriatic arthritis: A literature review. Rheumatol Ther. 2019;6:23-32. doi: 1007/s40744-018-0132-4; Hutton J, Mease P, Jadon D. Horizon scan: State-of-the-art therapeutics for psoriatic arthritis. Best Practice Res Clin Rheumatol. 2022;36:101809. doi:10.1016/j.berh.2022.101809; Lubrano E, Perrotta FM, Scriffignano S, Coates LC, Helliwell P. Sustained very low disease activity and remission in psoriatic arthritis patients. Rheumatol Ther. 2019;6:521-528. doi:10.1007/s40744-019-00171-w; Murray K, Turk M, Alammari Y, Young F, Gallagher P, Saber T, et al. Long-term remission and biologic persistence rates: 12-year real-world data. Arthritis Res Ther. 2021;23(1):25. doi:10.1186/s13075-020-02380-z; Alten R, Conaghan PG, Strand V, Sullivan E, Blackburn S, Tian H, et al. Unmet needs in psoriatic arthritis patients receiving immunomodulatory therapy: Results from a large multinational real-world study. Clin Rheumatol. 2019;38(6):1615-1626. doi:10.1007/s10067-019-04446-z; Hagège B, Tan E, Gayraud M, Fautrel B, Gossec L, Mitrovic S. Remission and low disease activity in psoriatic arthritis publications: A systematic literature review with meta-analysis. Meta-Analysis Rheumatology (Oxford). 2020;59(8):1818-1825. doi:10.1093/rheumatology/keaa030; Haugeberg G, Michelsen B, Tengesda S, Hansen IJW, Diamantopoulos A, Kavanaugh A. Ten years of follow-up data in psoriatic arthritis: Results based on standardized monitoring of patients in an ordinary outpatient clinic in southern Norway. Arthritis Res Ther. 2018;20:160. doi:10.1186/s13075-018-1659-z; Sundanum S, Orr C, Veale D. Targeted therapies in psoriatic arthritis – An update. Int J Mol Sci. 2023;24:6384. doi:10.3390/ijms24076384; Alharbi S, Ye JY, Lee K-A, Chandran V, Cook RJ, Gladman DD. Remission in psoriatic arthritis: Definition and predictors. Semin Arthritis Rheum. 2020;50(6):1494-1499. doi:10.1016/j.semarthrit.2020.01.012; Vallejo-Yagüe E, Burkard T, Micheroli R, Burden AM. Minimal disease activity and remission in patients with psoriatic arthritis with elevated body mass index: An observational cohort study in the Swiss Clinical Quality Management cohort. BMJ Open. 2022;12:e061474. doi:10.1136/bmjopen-2022-061474.; Almodóvar R, Zarco P, Otón T, Carmona L. Effect of weight loss on activity in psoriatic arthritis: A systematic review. Review Reumatol Clin (Engl Ed). 2018;14(4):207-210. doi:10.1016/j.reuma.2017.01.010; Корсакова ЮЛ, Коротаева ТВ, Логинова ЕЮ, Губарь ЕЕ, Василенко ЕА, Василенко АА, и др. Взаимосвязь ожирения, кардиометаболических нарушений и активности заболевания у больных псориатическим артритом: данные Общероссийского регистра. Терапевтический архив. 2021;93(5):573-580. doi:10.26442/00403660.2021.05.200789; Lubrano Е, Scriffignano S, Perrotta FM. Residual disease activity and associated factors in psoriatic arthritis. J Rheumatol. 2020;47:1490-1495. doi:10.3899/jrheum.190679; Coates LC, Wit M, Buchanan-Hughes A, Smulders M, Sheahan A, Ogdie AR. Residual disease associated with suboptimal treatment response in patients with psoriatic arthritis: A systematic review of real-world evidence. Rheumatol Ther. 2022;9:803-821. doi:10.1007/s40744-022-00443-y; Lubrano E, Scriffignano S, Perrotta FM. Sequencing of biologic and target synthetic disease modifying anti-rheumatic drugs in psoriatic arthritis: Are we ready to redefine the treatment strategy? A Perspective Rheumatol Ther. 2023;10:301-306. doi:10.1007/s40744-022-00514-0
-
15
Autori: a ďalší
Zdroj: Biomedical Photonics; Том 11, № 4 (2022); 25-31 ; 2413-9432
Predmety: прогностические факторы, photodynamic therapy, forecasting, survival, prognostic factors, фотодинамическая терапия, прогнозирование, выживаемость
Popis súboru: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/565/406; https://www.pdt-journal.com/jour/article/view/565/447; Состояние онкологической помощи населению России в 2020 году / под ред. Каприна А.Д., Старинского В.В., Петровой Г.В. // М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИРЦ» Минздрава России. – 2021. – С. 239.; Hang J. et al. Prediction of overall survival for metastatic pancreatic cancer: Development and validation of a prognostic nomogram with data from open clinical trial and real-world study // Cancer Medical. – 2018 – vol. 7(7). – P. 2974-84. doi:10.1002/cam4.1573.; Общероссийский национальный союз «Ассоциация онкологов России». Рак поджелудочной железы // Клинические рекомендации. – 2021. – C. 67 Ссылка активна на 28.06.2022. https://oncology-association.ru/wp-content/uploads/2021/04/kr_rak-podzheludochnoj-zhelezy_aor.pdf.; Ducreux M. et al. ESMO Guidelines Committee. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up // Annals of oncology. – 2015 – Suppl 5 – Р. 56-68. doi:10.1093/annonc/mdv295.; Российское общество хирургов. Механическая желтуха // Клинические рекомендации. – 2018 – С. 106 Ссылка активна на 28.06.2022. http://xn --- 9sbdbejx7bdduahou3a5d.xn--p1ai/stranica-pravlenija/klinicheskie-rekomendaci/urgentnaja-abdominalnaja-hirurgija/klinicheskie-rekomendaci-mehaniches-kaja-zheltuha.html.; Karimnia V. et al. Photodynamic Therapy for Pancreatic Ductal Adenocarcinoma // Cancers (Basel). – 2021 – vol. 13(17). – Р. 4354 doi:10.3390/cancers13174354.; Lu Y et al. E cacy and safety of photodynamic therapy for unresectable cholangiocarcinoma: A meta-analysis // Clinics and research in hepatology and gastroenterology. – 2015 – vol. 39(6). – Р. 718-724. doi:10.1016/j.clinre.2014.10.015.; Bown S.G. et al. Photodynamic therapy for cancer of the pancreas // Gut. – 2002 – vol. 50(4). – Р. 549-557. doi:10.1136/gut.50.4.549.; Huggett M.T. et al. Phase I/II study of vertepor n photodynamic therapy in locally advanced pancreatic cancer // British journal of cancer. – 2014 – vol. 110(7). – Р. 1698-1704. doi:10.1038/bjc.2014.95.; Wang L., Yu W.F. Obstructive jaundice and perioperative management // Acta Anaesthesiologica Taiwanica. – 2014 – vol. 52(1). – Р. 22-29. doi:10.1016/j.aat.2014.03.002.; Della Corte V. et al. Inflammation, Endothelial Dysfunction and Arterial Stiness as Therapeutic Targets in Cardiovascular Medicine // Curr Pharm Des. – 2016 – vol. 22(30). – Р. 4658-4668.; Hamilos M. et al. Interaction between platelets and endothelium: from pathophysiology to new therapeutic options // Cardiovasc Diagn Ther. – 2018 – vol. 8(5). – Р. 568-580.; Цеймах А.Е., Лазарев А.Ф., Куртуков В.А. и соавт. Способ комплексного мини-инвазивного лечения механической желтухи, холангита, внутрипеченочных абсцессов опухолевого генеза с применением локальной и системной фотодинамической терапии. – Патент РФ №2704474, 2019.; Dindo D., Demartines N. and Clavien P.A. Classi cation of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey // Annals of Surgery. – 2004 – vol. 240(2). – Р. 205-213.; DeWitt J.M. et al. Phase 1 study of EUS-guided photodynamic therapy for locally advanced pancreatic cancer // Gastrointest Endosc. – 2019 – vol. 89(2). – Р. 390-398.; Strei M.B. et al. Cancer-Associated Venous Thromboembolic Disease, Version 2.2021 NCCN Clinical Practice Guidelines in Oncology // Journal of the National Comprehensive Cancer Network. – 2021 – vol. 19(10). – Р. 1181-1201.; Цеймах А.Е, Куртуков В.А, Шойхет Я.Н. Способ прогнозирования трехмесячной выживаемости у больных со злокачественным новообразованием поджелудочной железы IV стадии при использовании фотодинамической терапии. – Патент РФ №2779088, 2021.
-
16
Autori: a ďalší
Zdroj: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 1 (2023); 11–24 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 1 (2023); 11–24 ; 2413-5496 ; 2311-1267
Predmety: прогностические факторы, atypical teratoid/rhabdoid tumor of the central nervous system, chemotherapy, radiation therapy, treatment results, survival, prognostic factors, атипичная тератоидно-рабдоидная опухоль центральной нервной системы, химиотерапия, лучевая терапия, результаты лечения, выживаемость
Popis súboru: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/906/800; Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20. doi:10.1007/s00401-016-1545-1.; Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–51. doi:10.1093/neuonc/noab106.; Nesvick C.L., Nageswara Rao A.A., Raghunathan A., Biegel J.A., Daniels D.J. Case-based review: atypical teratoid/rhabdoid tumor. Neurooncol Pract. 2019;6(3):163–78. doi:10.1093/nop/npy037.; Желудкова О.Г., Коршунов А.Г., Горбатых С.В., Лившиц Л.И., Попов В.Е., Тарасова И.С., Горелышев С.К., Озерова В.И., Щербенко О.И., Литвинов Д.И., Полушкина О.Б., Белогурова М.Б., Русанова М.Г. Злокачественные тератоид-рабдоидные опухоли центральной нервной системы у детей. Вопросы гематологии/ онкологии и иммунопатологии в педиатрии. 2003;2(3):32–9.; Tekautz T.M., Fuller C.E., Blaney S., Fouladi M., Broniscer A., Merchant T.E., Krasin M., Dalton J., Hale G., Kun L.E., Wallace D., Gilbertson R.J., Gajjar A. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J Clin Oncol. 2005;23(7):1491–9. doi:10.1200/JCO.2005.05.187.; Broggi G., Gianno F., Shemy D.T., Massimino M., Milanaccio C., Mastronuzzi A., Rossi S., Arcella A., Giangaspero F., Antonelli M. Atypical teratoid/rhabdoid tumor in adults: a systematic review of the literature with meta-analysis and additional reports of 4 cases. J Neurooncol. 2022;157(1):1–14. doi:10.1007/s11060-022-03959-z.; Ольхова Л.В., Желудкова О.Г., Кушель Ю.В., Трунин Ю.Ю., Крянев А.М., Аббасова Е.В., Коршунов А.Г. Атипичная тератоид-рабдоидная опухоль у подростка: клинический примеp сложного диагностического поиска. Вестник РНЦРР. 2019;19(4):129–43.; McNeill K.A. Epidemiology of Brain Tumors. Neurol Clin. 2016;34(4):981–98. doi:10.1016/j.ncl.2016.06.014.; Bettelheim K., Nemes K., Seeringer A., Kerl K., Buechner J., Boos J., Graf N., Dürken M., Gerss J., Hasselblatt M., Kortmann R.D., Teichert von Luettichau I., Nagel I., Nygaard R., Oyen F., Quiroga E., Schlegel P.G., Schmid I., Schneppenheim R., Siebert R., Solano-Paez P., Timmermann B., Warmuth-Metz M., Frühwald M.C. Improved 6-year overall survival in AT/RT – results of the registry study Rhabdoid 2007. Cancer Med. 2016;5(8):1765–75. doi:10.1002/cam4.741.; Frühwald M.C., Hasselblatt M., Nemes K., Bens S., Steinbügl M., Johann P.D., Kerl K., Hauser P., Quiroga E., Solano-Paez P., Biassoni V., Gil-da-Costa M.J., Perek-Polnik M., van de Wetering M., Sumerauer D., Pears J., Stabell N., Holm S., Hengartner H., Gerber N.U., Grotzer M., Boos J., Ebinger M., Tippelt S., Paulus W., Furtwängler R., Hernáiz-Driever P., Reinhard H., Rutkowski S., Schlegel P.G., Schmid I., Kortmann R.D., Timmermann B., Warmuth-Metz M., Kordes U., Gerss J., Nysom K., Schneppenheim R., Siebert R., Kool M., Graf N. Age and DNA methylation subgroup as potential independent risk factors for treatment stratification in children with atypical teratoid/rhabdoid tumors. Neuro Oncol. 2020;22(7):1006–17. doi:10.1093/neuonc/noz244.; Nemes K., Clément N., Kachanov D., Bens S., Hasselblatt M., Timmermann B., Schneppenheim R., Gerss J., Siebert R., Furtwängler R., Bourdeaut F., Frühwald M.C.; EU-RHAB consortium. The extraordinary challenge of treating patients with congenital rhabdoid tumors-a collaborative European effort. Pediatr Blood Cancer. 2018;65(6):e26999. doi:10.1002/pbc.26999.; Park M., Han J.W., Hahn S.M., Lee J.A., Kim J.Y., Shin S.H., Kim D.S., Yoon H.I., Hong K.T., Choi J.Y., Kang H.J., Shin H.Y., Phi J.H., Kim S.K., Lee J.W., Yoo K.H., Sung K.W., Koo H.H., Lim D.H., Shin H.J., Kim H., Koh K.N., Im H.J., Ahn S.D., Ra Y.S., Baek H.J., Kook H., Jung T.Y., Choi H.S., Kim C.Y., Park H.J., Lyu C.J. Atypical Teratoid/Rhabdoid Tumor of the Central Nervous System in Children under the Age of 3 Years. Cancer Res Treat. 2021;53(2):378–88. doi:10.4143/crt.2020.756.; Reddy A.T., Strother D.R., Judkins A.R., Burger P.C., Pollack I.F., Krailo M.D., Buxton A.B., Williams-Hughes C., Fouladi M., Mahajan A., Merchant T.E., Ho B., Mazewski C.M., Lewis V.A., Gajjar A., Vezina L.G., Booth T.N., Parsons K.W., Poss V.L., Zhou T., Biegel J.A., Huang A. Efficacy of High-Dose Chemotherapy and Three-Dimensional Conformal Radiation for Atypical Teratoid/ Rhabdoid Tumor: A Report From the Children's Oncology Group Trial ACNS0333. J Clin Oncol. 2020;38(11):1175–85. doi:10.1200/JCO.19.01776.; Sung K.W., Lim D.H., Yi E.S., Choi Y.B., Lee J.W., Yoo K.H., Koo H.H., Kim J.H., Suh Y.L., Joung Y.S., Shin H.J. Tandem HighDose Chemotherapy and Autologous Stem Cell Transplantation for Atypical Teratoid/Rhabdoid Tumor. Cancer Res Treat. 2016;48(4):1408–19. doi:10.4143/crt.2015.347.; Zaky W., Dhall G., Ji L., Haley K., Allen J., Atlas M., Bertolone S., Cornelius A., Gardner S., Patel R., Pradhan K., Shen V., Thompson S., Torkildson J., Sposto R., Finlay J.L. Intensive induction chemotherapy followed by myeloablative chemotherapy with autologous hematopoietic progenitor cell rescue for young children newlydiagnosed with central nervous system atypical teratoid/rhabdoid tumors: the Head Start III experience. Pediatr Blood Cancer. 2014;61(1):95–101. doi:10.1002/pbc.24648.; Chi S.N., Zimmerman M.A., Yao X., Cohen K.J., Burger P., Biegel J.A., Rorke-Adams L.B., Fisher M.J., Janss A., Mazewski C., Goldman S., Manley P.E., Bowers D.C., Bendel A., Rubin J., Turner C.D., Marcus K.J., Goumnerova L., Ullrich N.J., Kieran M.W. Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol. 2009;27(3):385–9. doi:10.1200/JCO.2008.18.7724.; Slavc I., Chocholous M., Leiss U., Haberler C., Peyrl A., Azizi A.A., Dieckmann K., Woehrer A., Peters C., Widhalm G., Dorfer C., Czech T. Atypical teratoid rhabdoid tumor: improved long-term survival with an intensive multimodal therapy and delayed radiotherapy. The Medical University of Vienna Experience 1992– 2012. Cancer Med. 2014;3(1):91–100. doi:10.1002/cam4.161.; Ольхова Л.В., Желудкова О.Г., Попов В.Е., Басалай Т.В., Кисляков А.Н., Скобеев Д.А., Ким Л.А. Шунт-ассоциированное интраабдоминальное метастазирование атипичной тератоид-рабдоидной опухоли головного мозга. Детская хирургия. 2020;24(2):108–16. doi:10.18821/1560-9510-2020-24-2-108-116.; Holdhof D., Johann P.D., Spohn M., Bockmayr M., Safaei S., Joshi P., Masliah-Planchon J., Ho B., Andrianteranagna M., Bourdeaut F., Huang A., Kool M., Upadhyaya S.A., Bendel A.E., Indenbirken D., Foulkes W.D., Bush J.W., Creytens D., Kordes U., Frühwald M.C., Hasselblatt M., Schüller U. Atypical teratoid/rhabdoid tumors (ATRTs) with SMARCA4 mutation are molecularly distinct from SMARCB1-deficient cases. Acta Neuropathol. 2021;141(2):291–301. doi:10.1007/s00401-020-02250-7.; Johann P.D., Erkek S., Zapatka M., Kerl K., Buchhalter I., Hovestadt V., Jones D.T.W., Sturm D., Hermann C., Segura Wang M., Korshunov A., Rhyzova M., Gröbner S., Brabetz S., Chavez L., Bens S., Gröschel S., Kratochwil F., Wittmann A., Sieber L., Geörg C., Wolf S., Beck K., Oyen F., Capper D., van Sluis P., Volckmann R., Koster J., Versteeg R., von Deimling A., Milde T., Witt O., Kulozik A.E., Ebinger M., Shalaby T., Grotzer M., Sumerauer D., Zamecnik J., Mora J., Jabado N., Taylor M.D., Huang A., Aronica E., Bertoni A., Radlwimmer B., Pietsch T., Schüller U., Schneppenheim R., Northcott P.A., Korbel J.O., Siebert R., Frühwald M.C., Lichter P., Eils R., Gajjar A., Hasselblatt M., Pfister S.M., Kool M. Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell. 2016;29(3):379–93. doi:10.1016/j.ccell.2016.02.001.; Torchia J., Picard D., Lafay-Cousin L., Hawkins C.E., Kim S.K., Letourneau L., Ra Y.S., Ho K.C., Chan T.S., Sin-Chan P., Dunham C.P., Yip S., Ng H.K., Lu J.Q., Albrecht S., Pimentel J., Chan J.A., Somers G.R., Zielenska M., Faria C.C., Roque L., Baskin B., Birks D., Foreman N., Strother D., Klekner A., Garami M., Hauser P., Hortobágyi T., Bognár L., Wilson B., Hukin J., Carret A.S., Van Meter T.E., Nakamura H., Toledano H., Fried I., Fults D., Wataya T., Fryer C., Eisenstat D.D., Scheineman K., Johnston D., Michaud J., Zelcer S., Hammond R., Ramsay D.A., Fleming A.J., Lulla R.R., Fangusaro J.R., Sirachainan N., Larbcharoensub N., Hongeng S., Barakzai M.A., Montpetit A., Stephens D., Grundy R.G., Schüller U., Nicolaides T., Tihan T., Phillips J., Taylor M.D., Rutka J.T., Dirks P., Bader G.D., Warmuth-Metz M., Rutkowski S., Pietsch T., Judkins A.R., Jabado N., Bouffet E., Huang A. Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncol. 2015;16(5):569–82. doi:10.1016/S1470-2045(15)70114-2.; Torchia J., Golbourn B., Feng S., Ho K.C., Sin-Chan P., Vasiljevic A., Norman J.D., Guilhamon P., Garzia L., Agamez N.R., Lu M., Chan T.S., Picard D., de Antonellis P., Khuong-Quang D.A., Planello A.C., Zeller C., Barsyte-Lovejoy D., Lafay-Cousin L., Letourneau L., Bourgey M., Yu M., Gendoo D.M.A., Dzamba M., Barszczyk M., Medina T., Riemenschneider A.N., Morrissy A.S., Ra Y.S., Ramaswamy V., Remke M., Dunham C.P., Yip S., Ng H.K., Lu J.Q., Mehta V., Albrecht S., Pimentel J., Chan J.A., Somers G.R., Faria C.C., Roque L., Fouladi M., Hoffman L.M., Moore A.S., Wang Y., Choi S.A., Hansford J.R., Catchpoole D., Birks D.K., Foreman N.K., Strother D., Klekner A., Bognár L., Garami M., Hauser P., Hortobágyi T., Wilson B., Hukin J., Carret A.S., Van Meter T.E., Hwang E.I., Gajjar A., Chiou S.H., Nakamura H., Toledano H., Fried I., Fults D., Wataya T., Fryer C., Eisenstat D.D., Scheinemann K., Fleming A.J., Johnston D.L., Michaud J., Zelcer S., Hammond R., Afzal S., Ramsay D.A., Sirachainan N., Hongeng S., Larbcharoensub N., Grundy R.G., Lulla R.R., Fangusaro J.R., Druker H., Bartels U., Grant R., Malkin D., McGlade C.J., Nicolaides T., Tihan T., Phillips J., Majewski J., Montpetit A., Bourque G., Bader G.D., Reddy A.T., Gillespie G.Y., Warmuth-Metz M., Rutkowski S., Tabori U., Lupien M., Brudno M., Schüller U., Pietsch T., Judkins A.R., Hawkins C.E., Bouffet E., Kim S.K., Dirks P.B., Taylor M.D., Erdreich-Epstein A., Arrowsmith C.H., De Carvalho D.D., Rutka J.T., Jabado N., Huang A. Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell. 2016;30(6):891–908. doi:10.1016/j.ccell.2016.11.003.; https://journal.nodgo.org/jour/article/view/906
-
17
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 3 (2023); 22-40 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 3 (2023); 22-40 ; 2413-5496 ; 2311-1267
Predmety: прогностические факторы, medulloblastoma, WNT molecular group, treatment outcomes, survival, prognostic factors, медуллобластома, молекулярная группа WNT, результаты лечения, выживаемость
Popis súboru: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/960/844; Ostrom Q.T., CioffiG., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro Oncol. 2021;23(12 Suppl 2):iii1–iii105. doi:10.1093/neuonc/noab200.; Johnston D.L., Keene D., Strother D., Taneva M., Lafay-Cousin L., Fryer C., Scheinemann K., Carret A.S., Fleming A., Afzal S., Wilson B., Bowes L., Zelcer S., Mpofu C., Silva M., Larouche V., Brossard J., Bouff et E. Survival Following Tumor Recurrence in Children With Medulloblastoma. J Pediatr Hematol Oncol. 2018;40(3):e159–e163. doi:10.1097/MPH.0000000000001095.; Chintagumpala M., Gajjar A. Brain tumors. Pediatr Clin North Am. 2015;62(1):167–78. doi:10.1016/j.pcl.2014.09.011.; Onodera S., Nakamura Y., Azuma T. Gorlin Syndrome: Recent Advances in Genetic Testing and Molecular and Cellular Biological Research. Int J Mol Sci. 2020;21(20):7559. doi:10.3390/ijms21207559.; Langenberg K.P.S., Meister M.T., Bakhuizen J.J., Boer J.M., van Eijkelenburg N.K.A., Hulleman E., Ilan U., Looze E.J., Dierselhuis M.P., van der Lugt J., Breunis W., Schild L.G., Ober K., van Hooff S.R., Scheijde-Vermeulen M.A., Hiemcke-Jiwa L.S., Flucke U.E., Kranendonk M.E.G., Wesseling P., Sonneveld E., Punt S., Boltjes A., van Dijk F., Verwiel E.T.P., Volckmann R., Hehir-Kwa J.Y., Kester L.A., Koudijs M.M.J., Waanders E., Holstege F.C.P., Vormoor H.J., Hoving E.W., van Noesel M.M., Pieters R., Kool M., Stumpf M., Blattner-Johnson M., Balasubramanian G.P., Van Tilburg C.M., Jones B.C., Jones D.T.W., Witt O., Pfister S.M., Jongmans M.C.J., Kuiper R.P., de Krijger R.R., Wijnen M.H.W., den Boer M.L., Zwaan C.M., Kemmeren P., Koster J., Tops B.B.J., Goemans B.F., Molenaar J.J. Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program 'iTHER'. Eur J Cancer. 2022;175:311–25. doi:10.1016/j.ejca.2022.09.001.; Schroeder K., Gururangan S. Molecular variants and mutations in medulloblastoma. Pharmgenomics Pers Med. 2014;7:43–51. doi:10.2147/PGPM.S38698.; Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–51. doi:10.1093/neuonc/noab106.; Kram D.E., Henderson J.J., Baig M., Chakraborty D., Gardner M.A., Biswas S., Khatua S. Embryonal Tumors of the Central Nervous System in Children: The Era of Targeted Therapeutics. Bioengineering (Basel). 2018;5(4):78. doi:10.3390/bioengineering5040078.; Eberhart C.G., Tihan T., Burger P.C. Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol. 2000;59(4):333–7. doi:10.1093/jnen/59.4.333.; Fattet S., Haberler C., Legoix P., Varlet P., Lellouch-Tubiana A., Lair S., Manie E., Raquin M.A., Bours D., Carpentier S., Barillot E., Grill J., Doz F., Puget S., Janoueix-Lerosey I., Delattre O. Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol. 2009;218(1):86–94. doi:10.1002/path.2514.; Dahmen R.P., Koch A., Denkhaus D., Tonn J.C., Sörensen N., Berthold F., Behrens J., Birchmeier W., Wiestler O.D., Pietsch T. Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res. 2001;61(19):7039–43. PMID: 11585731.; Huang H., Mahler-Araujo B.M., Sankila A., Chimelli L., Yonekawa Y., Kleihues P., Ohgaki H. APC mutations in sporadic medulloblastomas. Am J Pathol. 2000;156(2):433–7. doi:10.1016/S0002-9440(10)64747-5.; Koch A., Hrychyk A., Hartmann W., Waha A., Mikeska T., Waha A., Schüller U., Sörensen N., Berthold F., Goodyer C.G., Wiestler O.D., Birchmeier W., Behrens J., Pietsch T. Mutations of the WNT antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomas. Int J Cancer. 2007;121(2):284–91. doi:10.1002/ijc.22675.; Shih D.J., Northcott P.A., Remke M., Korshunov A., Ramaswamy V., Kool M., Luu B., Yao Y., Wang X., Dubuc A.M., Garzia L., Peacock J., Mack S.C., Wu X., Rolider A., Morrissy A.S., Cavalli F.M., Jones D.T., Zitterbart K., Faria C.C., Schüller U., Kren L., Kumabe T., Tominaga T., Shin Ra Y., Garami M., Hauser P., Chan J.A., Robinson S., Bognár L., Klekner A., Saad A.G., Liau L.M., Albrecht S., Fontebasso A., Cinalli G., De Antonellis P., Zollo M., Cooper M.K., Thompson R.C., Bailey S., Lindsey J.C., Di Rocco C., Massimi L., Michiels E.M., Scherer S.W., Phillips J.J., Gupta N., Fan X., Muraszko K.M., Vibhakar R., Eberhart C.G., Fouladi M., Lach B., Jung S., Wechsler-Reya R.J., Fèvre-Montange M., Jouvet A., Jabado N., Pollack I.F., Weiss W.A., Lee J.Y., Cho B.K., Kim S.K., Wang K.C., Leonard J.R., Rubin J.B., de Torres C., Lavarino C., Mora J., Cho Y.J., Tabori U., Olson J.M., Gajjar A., Packer R.J., Rutkowski S., Pomeroy S.L., French P.J., Kloosterhof N.K., Kros J.M., Van Meir E.G., Cliff ord S.C., Bourdeaut F., Delattre O., Doz F.F., Hawkins C.E., Malkin D., Grajkowska W.A., Perek-Polnik M., Bouff et E., Rutka J.T., Pfister S.M., Taylor M.D. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol. 2014;32(9):886–96. doi:10.1200/JCO.2013.50.9539.; Waszak S.M., Northcott P.A., Buchhalter I., Robinson G.W., Sutter C., Groebner S., Grund K.B., Brugières L., Jones D.T.W., Pajtler K.W., Morrissy A.S., Kool M., Sturm D., Chavez L., Ernst A., Brabetz S., Hain M., Zichner T., Segura-Wang M., Weischenfeldt J., Rausch T., Mardin B.R., Zhou X., Baciu C., Lawerenz C., Chan J.A., Varlet P., Guerrini-Rousseau L., Fults D.W., Grajkowska W., Hauser P., Jabado N., Ra Y.S., Zitterbart K., Shringarpure S.S., De La Vega F.M., Bustamante C.D., Ng H.K., Perry A., MacDonald T.J., Hernáiz Driever P., Bendel A.E., Bowers D.C., McCowage G., Chintagumpala M.M., Cohn R., Hassall T., Fleischhack G., Eggen T., Wesenberg F., Feychting M., Lannering B., Schüz J., Johansen C., Andersen T.V., Röösli M., Kuehni C.E., Grotzer M., Kjaerheim K., Monoranu C.M., Archer T.C., Duke E., Pomeroy S.L., Shelagh R., Frank S., Sumerauer D., Scheurlen W., Ryzhova M.V., Milde T., Kratz C.P., Samuel D., Zhang J., Solomon D.A., Marra M., Eils R., Bartram C.R., von Hoff K., Rutkowski S., Ramaswamy V., Gilbertson R.J., Korshunov A., Taylor M.D., Lichter P., Malkin D., Gajjar A., Korbel J.O., Pfister S.M. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 2018;19(6):785–98. doi:10.1016/S1470-2045(18)30242-0.; Goschzik T., ZurMühlen A., Kristiansen G., Haberler C., Stefanits H., Friedrich C., von Hoff K., Rutkowski S., Pfister S.M., Pietsch T. Molecular stratification of medulloblastoma: comparison of histological and genetic methods to detect WNT activated tumours. Neuropathol Appl Neurobiol. 2015;41(2):135–44. doi:10.1111/nan.12161.; Kool M., Korshunov A., Remke M., Jones D.T., Schlanstein M., Northcott P.A., Cho Y.J., Koster J., Schouten-van Meeteren A., van Vuurden D., Cliff ord S.C., Pietsch T., von Bueren A.O., Rutkowski S., McCabe M., Collins V.P., Bäcklund M.L., Haberler C., Bourdeaut F., Delattre O., Doz F., Ellison D.W., Gilbertson R.J., Pomeroy S.L., Taylor M.D., Lichter P., Pfister S.M. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473–84. doi:10.1007/s00401-012-0958-8.; Cavalli F.M.G., Remke M., Rampasek L., Peacock J., Shih D.J.H., Luu B., Garzia L., Torchia J., Nor C., Morrissy A.S., Agnihotri S., Thompson Y.Y., Kuzan-Fischer C.M., Farooq H., Isaev K., Daniels C., Cho B.K., Kim S.K., Wang K.C., Lee J.Y., Grajkowska W.A., Perek-Polnik M., Vasiljevic A., Faure-Conter C., Jouvet A., Giannini C., Nageswara Rao A.A., Li K.K.W., Ng H.K., Eberhart C.G., Pollack I.F., Hamilton R.L., Gillespie G.Y., Olson J.M., Leary S., Weiss W.A., Lach B., Chambless L.B., Thompson R.C., Cooper M.K., Vibhakar R., Hauser P., van Veelen M.C., Kros J.M., French P.J., Ra Y.S., Kumabe T., López-Aguilar E., Zitterbart K., Sterba J., Finocchiaro G., Massimino M., Van Meir E.G., Osuka S., Shofuda T., Klekner A., Zollo M., Leonard J.R., Rubin J.B., Jabado N., Albrecht S., Mora J., Van Meter T.E., Jung S., Moore A.S., Hallahan A.R., Chan J.A., Tirapelli D.P.C., Carlotti C.G., Fouladi M., Pimentel J., Faria C.C., Saad A.G., Massimi L., Liau L.M., Wheeler H., Nakamura H., Elbabaa S.K., Perezpeña-Diazconti M., Chico Ponce de León F., Robinson S., Zapotocky M., Lassaletta A., Huang A., Hawkins C.E., Tabori U., Bouff et E., Bartels U., Dirks P.B., Rutka J.T., Bader G.D., Reimand J., Goldenberg A., Ramaswamy V., Taylor M.D. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. 2017;31(6):737–54.e6. doi:10.1016/j.ccell.2017.05.005.; Goschzik T., ZurMuehlen A., Doerner E., Waha A., Friedrich C., Hau P., Pietsch T. Medulloblastoma in Adults: Cytogenetic Phenotypes Identify Prognostic Subgroups. J Neuropathol Exp Neurol. 2021;80(5):419–30. doi:10.1093/jnen/nlab020.; Cliff ord S.C., Lannering B., Schwalbe E.C., Hicks D., O’Toole K., Nicholson S.L., Goschzik T., Zur Mühlen A., Figarella-Branger D., Doz F., Rutkowski S., Gustafsson G., Pietsch T.; SIOP-Europe PNET Group. Biomarker-driven stratification of disease-risk in non-metastatic medulloblastoma: Results from the multi-center HIT-SIOP-PNET4 clinical trial. Oncotarget. 2015;6(36):38827–39. doi:10.18632/oncotarget.5149.; Sabel M., Fleischhack G., Tippelt S., Gustafsson G., Doz F., Kortmann R., Massimino M., Navajas A., von Hoff K., Rutkowski S., Warmuth-Metz M., Cliff ord S.C., Pietsch T., Pizer B., Lannering B.; SIOP-E Brain Tumour Group. Relapse patterns and outcome after relapse in standard risk medulloblastoma: a report from the HIT-SIOP-PNET4 study. J Neurooncol. 2016;129(3):515–24. doi:10.1007/s11060-016-2202-1.; Gottardo N.G., Hansford J.R., McGlade J.P., Alvaro F., Ashley D.M., Bailey S., Baker D.L., Bourdeaut F., Cho Y.-J., Clay M., Cliff ord S.C., Cohn R.J., Cole C.H., Dallas P.B., Downie P., Doz F., Ellison D.W., Endersby R., Fisher P.G., Hassall T., Heath J.A., Hii H.L., Jones D.T.W., Junckerstorff R., Kellie S., Kool M., Kotecha R.S., Lichter P., Laughton S.J., Lee S., McCowage G., Northcott P.A., Olson J.M., Packer R.J., Pfister S.M., Pietsch P.T., Pizer B., Pomeroy S.L., Remke M., Robinson G.W., Rutkowski S., Schoep T., Shelat A.A., Stewart C.F., Sullivan M., Taylor M.D., Wainwright B., Walwyn T., Weiss W.A., Williamson D., Gajjar A. Medulloblastoma down under 2013: a report from the third annual meeting of the International Medulloblastoma Working Group. Acta Neuropathol. 2014;127(2):189–201. doi:10.1007/s00401-013-1213-7.; Ramaswamy V., Remke M., Bouff et E., Bailey S., Cliff ord S.C., Doz F., Kool M., Dufour C., Vassal G., Milde T., Witt O., von Hoff K., Pietsch T., Northcott P.A., Gajjar A., Robinson G.W., Padovani L., André N., Massimino M., Pizer B., Packer R., Rutkowski S., Pfister S.M., Taylor M.D., Pomeroy S.L. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131(6):821–31. doi:10.1007/s00401-016-1569-6.; Dietzsch S., Placzek F., Pietschmann K., von Bueren A.O., Matuschek C., Glück A., Guckenberger M., Budach V., Welzel J., Pöttgen C., Schmidberger H., Heinzelmann F., Paulsen F., Escudero M.P., Schwarz R., Hornung D., Martini C., Grosu A.L., Stueben G., Jablonska K., Dunst J., Stranzl-Lawatsch H., Dieckmann K., Timmermann B., Pietsch T., Warmuth-Metz M., Bison B., Kwiecien R., Benesch M., Gerber N.U., Grotzer M.A., Pfister S.M., Cliff ord S.C., von Hoff K., Klagges S., Rutkowski S., Kortmann R.D., Mynarek M. Evaluation of Prognostic Factors and Role of Participation in a Randomized Trial or a Prospective Registry in Pediatric and Adolescent Nonmetastatic Medulloblastoma – A Report From the HIT 2000 Trial. Adv Radiat Oncol. 2020;5(6):1158–69. doi:10.1016/j.adro.2020.09.018.; Gajjar A., Robinson G.W., Smith K.S., Lin T., Merchant T.E., Chintagumpala M., Mahajan A., Su J., Bouff et E., Bartels U., Schechter T., Hassall T., Robertson T., Nicholls W., Gururangan S., Schroeder K., Sullivan M., Wheeler G., Hansford J.R., Kellie S.J., McCowage G., Cohn R., Fisher M.J., Krasin M.J., Stewart C.F., Broniscer A., Buchhalter I., Tatevossian R.G., Orr B.A., Neale G., Klimo P. Jr, Boop F., Srinivasan A., Pfister S.M., Gilbertson R.J., Onar-Thomas A., Ellison D.W., Northcott P.A. Outcomes by Clinical and Molecular Features in Children With Medulloblastoma Treated With Risk-Adapted Therapy: Results of an International Phase III Trial (SJMB03). J Clin Oncol. 2021;39(7):822–35. doi:10.1200/JCO.20.01372.; Michalski J.M., Janss A.J., Vezina L.G., Smith K.S., Billups C.A., Burger P.C., Embry L.M., Cullen P.L., Hardy K.K., Pomeroy S.L., Bass J.K., Perkins S.M., Merchant T.E., Colte P.D., Fitzgerald T.J., Booth T.N., Cherlow J.M., Muraszko K.M., Hadley J., Kumar R., Han Y., Tarbell N.J., Fouladi M., Pollack I.F., Packer R.J., Li Y., Gajjar A., Northcott P.A. Children’s Oncology Group Phase III Trial of ReducedDose and Reduced-Volume Radiotherapy With Chemotherapy for Newly Diagnosed Average-Risk Medulloblastoma. J Clin Oncol. 2021;39(24):2685–97. doi:10.1200/JCO.20.02730.; Bueren A.O., Kortmann R.-D., Hoff K., Friedrich C., Mynarek M., Muller K., Goschzik T., Muhlen A., Gerber N., Warmuth-Metz M., Soerensen N., Deinlein F., Benesch M., Zwiener I., Kwiecien R., Faldum A., Bode U., Fleischhack G., Hovestadt V., Kool M., Jones D., Northcott P., Kuehl J., Pfister S., Pietsch T., Rutkowski S. Treatment of children and adolescents with metastatic medulloblastoma and prognostic relevance of clinical and biologic parameters. J Clin Oncol. 2016;34(34):4151–60. doi:10.1200/JCO.2016.67.2428.; Michiels E.M.C., Schouten-Van Meeteren A.Y.N., Doz F., Janssens G.O., van Dalen E.C. Chemotherapy for children with medulloblastoma (Review). Cochrane Database Syst Rev. 2015;1:CD006678. doi:10.1002/14651858.CD006678.pub2.; Dhall G., O’Neil S.H., Ji L., Haley K., Whitaker A.M., Nelson M.D., Gilles F., Gardner S.L., Allen J.C., Cornelius A.S., Pradhan K., Garvin J.H., Olshefski R.S., Hukin J., Comito M., Goldman S., Atlas M.P., Walter A.W., Sands S., Sposto R., Finlay J.L. Excellent outcome of young children with nodular desmoplastic medulloblastoma treated on “Head Start” III: a multi-institutional, prospective clinical trial. Neuro Oncol. 2020;22(12):1862–72. doi:10.1093/neuonc/noaa102.; Gajjar A., Chintagumpala M., Ashley D., Kellie S., Kun L.E., Merchant T.E., Woo S., Wheeler G., Ahern V., Krasin M.J., Fouladi M., Broniscer A., Krance R., Hale G.A., Stewart C.F., Dauser R., Sanford R.A., Fuller C., Lau C., Boyett J.M., Wallace D., Gilbertson R.J. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 2006;7(10):813–20. doi:10.1016/S1470-2045(06)70867-1. Erratum in: Lancet Oncol. 2006;7(10):797.; Zhukova N., Ramaswamy V., Remke M., Pfaff E., Shih D.J., Martin D.C., Castelo-Branco P., Baskin B., Ray P.N., Bouff et E., von Bueren A.O., Jones D.T., Northcott P.A., Kool M., Sturm D., Pugh T.J., Pomeroy S.L., Cho Y.J., Pietsch T., Gessi M., Rutkowski S., Bognar L., Klekner A., Cho B.K., Kim S.K., Wang K.C., Eberhart C.G., Fevre-Montange M., Fouladi M., French P.J., Kros M., Grajkowska W.A., Gupta N., Weiss W.A., Hauser P., Jabado N., Jouvet A., Jung S., Kumabe T., Lach B., Leonard J.R., Rubin J.B., Liau L.M., Massimi L., Pollack I.F., Shin Ra Y., Van Meir E.G., Zitterbart K., Schüller U., Hill R.M., Lindsey J.C., Schwalbe E.C., Bailey S., Ellison D.W., Hawkins C., Malkin D., Cliff ord S.C., Korshunov A., Pfister S., Taylor M.D., Tabori U. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013;31(23):2927–35. doi:10.1200/JCO.2012.48.5052.; Nobre L., Zapotocky M., Khan S., Fukuoka K., Fonseca A., McKeown T., Sumerauer D., Vicha A., Grajkowska W.A., Trubicka J., Li K.K.W., Ng H.K., Massimi L., Lee J.Y., Kim S.K., Zelcer S., Vasiljevic A., Faure-Conter C., Hauser P., Lach B., van Veelen-Vincent M.L., French P.J., Van Meir E.G., Weiss W.A., Gupta N., Pollack I.F., Hamilton R.L., Nageswara Rao A.A., Giannini C., Rubin J.B., Moore A.S., Chambless L.B., Vibhakar R., Ra Y.S., Massimino M., McLendon R.E., Wheeler H., Zollo M., Ferruci V., Kumabe T., Faria C.C., Sterba J., Jung S., López-Aguilar E., Mora J., Carlotti C.G., Olson J.M., Leary S., Cain J., Krskova L., Zamecnik J., Hawkins C.E., Tabori U., Huang A., Bartels U., Northcott P.A., Taylor M.D., Yip S., Hansford J.R., Bouff et E., Ramaswamy V. Pattern of Relapse and Treatment Response in WNTActivated Medulloblastoma. Cell Rep Med. 2020;1(3):100038. doi:10.1016/j.xcrm.2020.100038.; Leary S.E.S., Packer R.J., Li Y., Billups C.A., Smith K.S., Jaju A., Heier L., Burger P., Walsh K., Han Y., Embry L., Hadley J., Kumar R., Michalski J., Hwang E., Gajjar A., Pollack I.F., Fouladi M., Northcott P.A., Olson J.M. Efficacy of Carboplatin and Isotretinoin in Children With High-risk Medulloblastoma: A Randomized Clinical Trial From the Children’s Oncology Group. JAMA Oncol. 2021;7(9):1313–21. doi:10.1001/jamaoncol.2021.2224.; Mani S., Chatterjee A., Dasgupta A., Shirsat N., Epari S., Chinnaswamy G., Gupta T. WNT-pathway medulloblastoma: what constitutes low-risk and how low can one go? Oncotarget. 2023;14:105–10. doi:10.18632/oncotarget.28360.; Capper D., Jones D.T.W., Sill M., Hovestadt V., Schrimpf D., Sturm D., Koelsche C., Sahm F., Chavez L., Reuss D.E., Kratz A., Wefers A.K., Huang K., Pajtler K.W., Schweizer L., Stichel D., Olar A., Engel N.W., Lindenberg K., Harter P.N., Braczynski A.K., Plate K.H., Dohmen H., Garvalov B.K., Coras R., Hölsken A., Hewer E., Bewerunge-Hudler M., Schick M., Fischer R., Beschorner R., Schittenhelm J., Staszewski O., Wani K., Varlet P., Pages M., Temming P., Lohmann D., Selt F., Witt H., Milde T., Witt O., Aronica E., Giangaspero F., Rushing E., Scheurlen W., Geisenberger C., Rodriguez F.J., Becker A., Preusser M., Haberler C., Bjerkvig R., Cryan J., Farrell M., Deckert M., Hench J., Frank S., Serrano J., Kannan K., Tsirigos A., Brück W., Hofer S., Brehmer S., Seiz-Rosenhagen M., Hänggi D., Hans V., Rozsnoki S., Hansford J.R., Kohlhof P., Kristensen B.W., Lechner M., Lopes B., Mawrin C., Ketter R., Kulozik A., Khatib Z., Heppner F., Koch A., Jouvet A., Keohane C., Mühleisen H., Mueller W., Pohl U., Prinz M., Benner A., Zapatka M., Gottardo N.G., Driever P.H., Kramm C.M., Müller H.L., Rutkowski S., von Hoff K., Frühwald M.C., Gnekow A., Fleischhack G., Tippelt S., Calaminus G., Monoranu C.M., Perry A., Jones C., Jacques T.S., Radlwimmer B., Gessi M., Pietsch T., Schramm J,. Schackert G., Westphal M., Reifenberger G., Wesseling P., Weller M., Collins V.P., Blümcke I., Bendszus M., Debus J., Huang A., Jabado N., Northcott P.A., Paulus W., Gajjar A., Robinson G.W., Taylor M.D., Jaunmuktane Z., Ryzhova M., Platten M., Unterberg A., Wick W., Karajannis M.A., Mittelbronn M., Acker T., Hartmann C., Aldape K., Schüller U., Buslei R., Lichter P., Kool M., Herold-Mende C., Ellison D.W., Hasselblatt M., Snuderl M., Brandner S., Korshunov A., von Deimling A., Pfister S.M. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–74. doi:10.1038/nature26000.; Chang C.H., Housepian E.M., Herbert C. Jr. An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastomas. Radiology. 1969;93(6):1351–9. doi:10.1148/93.6.1351.; Goschzik T., Mynarek M., Doerner E., Schenk A., Spier I,. Warmuth-Metz M., Bison B., Obrecht D., Struve N., Kortmann R.D., Schmid M., Aretz S., Rutkowski S., Pietsch T. Genetic alterations of TP53 and OTX2 indicate increased risk of relapse in WNT medulloblastomas. Acta Neuropathol. 2022;144(6):1143–56. doi:10.1007/s00401-022-02505-5.; Thompson E.M., Hielscher T., Bouff et E., Remke M., Luu B., Gururangan S., McLendon R.E., Bigner D.D., Lipp E.S., Perreault S. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol. 2016;17(4):484–95. doi:10.1016/S1470-2045(15)00581-1.; Richardson S., Hill R.M., Kui C., Lindsey J.C., Grabovksa Y., Keeling C., Pease L., Bashton M., Crosier S., Vinci M., André N., Figarella-Branger D., Hansford J.R., Lastowska M., Zakrzewski K., Jorgensen M., Pickles J.C., Taylor M.D., Pfister S.M., Wharton S.B., Pizer B., Michalski A., Joshi A., Jacques T.S., Hicks D., Schwalbe E.C., Williamson D., Ramaswamy V., Bailey S., Cliff ord S.C. Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse. Neuro Oncol. 2022;24(1):153–65. doi:10.1093/neuonc/noab178.; https://journal.nodgo.org/jour/article/view/960
-
18
Autori: a ďalší
Zdroj: Andrology and Genital Surgery; Том 24, № 4 (2023); 128-134 ; Андрология и генитальная хирургия; Том 24, № 4 (2023); 128-134 ; 2412-8902 ; 2070-9781
Predmety: прогностические факторы, radical nephrectomy, venous thrombectomy, prognostic factors, радикальная нефрэктомия, венозная тромбэктомия
Popis súboru: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/713/558; Jalil R., Lamb B., Green J., Sevdalis N. P100 Streamlining the urology MDT meeting – survey results from a national sample. Eur Urol Suppl 2012;5(11):225.; Powell H.A., Baldwin D.R. Multidisciplinary team management in thoracic oncology: more than just a concept? Eur Respir J 2014;43(6):1776–86. DOI:10.1183/09031936.00150813; Zhao X., Li L., Liu Z. et al. Radical nephrectomy and inferior vena cava tumor thrombectomy for Mayo IV tumor thrombus: surgical techniques and clinical experience. J Mod Urol 2019;24(8):639–44.; Liu Z., Wang X., Zhou J. et al. Surgical effect and related prognositc factors in patients with renal cell carcinoma and venous tumor thrombus. J Clin Urol 2023;38(4):265–70.; Давыдов М.И., Матвеев В.Б., Волкова М.И. и др. Хирургическое лечение больных раком почки с массивной опухолевой инвазией нижней полой вены. Онкоурология 2017;13(1):27–36. DOI:10.17650/1726-9776-2017-13-1-27-36; Атдуев В.А., Амоев З.В., Данилов А.А. и др. Хирургическое лечение рака почки с протяженными тромбами нижней полой вены: осложнения и отдаленные результаты. Онкоурология 2017;13(1):37–44. DOI:10.17650/1726-9776-2017-13-1-37-44; Reese A.C., Whitson J.M., Meng M.V. Natural history of untreated renal cell carcinoma with venous tumor thrombus. Urol Oncol 2013;31(7):1305–9. DOI:10.1016/j.urolonc.2011.12.006; Zapała Ł., Sharma S., Kunc M. et al. Analysis of clinicopathological factors influencing survival in patients with renal cell carcinoma and venous tumor thrombus. J Clin Med 2021;10(17):3852. DOI:10.3390/jcm10173852; Chen Z., Yang F., Ge L. et al. Outcomes of renal cell carcinoma with associated venous tumor thrombus: experience from a large cohort and short time span in a single center. BMC Cancer 2021;21(1):766. DOI:10.1186/s12885-021-08508-x; Shiff B., Breau R.H., Mallick R. et al Prognostic significance of extent of venous tumor thrombus in patients with non-metastatic renal cell carcinoma: results from a Canadian multi-institutional collaborative. Urol Oncol 2021;39(12):836.e19–e27. DOI:10.1016/j.urolonc.2021.08.016; Master V.A., Ethun C.G., Kooby D.A. et al. The value of a cross-discipline team-based approach for resection of renal cell carcinoma with IVC tumor thrombus: a report of a large, contemporary, single-institution experience. J Surg Oncol 2018;118(8):1219–26. DOI:10.1002/jso.25271; Kirkali Z., Van Poppel H. A critical analysis of surgery for kidney cancer with vena cava invasion. Eur Urology 2007;52(3):658–62. DOI:10.1016/j.eururo.2007.05.009; https://agx.abvpress.ru/jour/article/view/713
-
19
Autori: Guda, Bogdan
Zdroj: ScienceRise: Medical Science; № 4 (31) (2019); 15-23
ScienceRise. Medical Science; № 4 (31) (2019); 15-23Predmety: 03 medical and health sciences, 0302 clinical medicine, papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), prognostic factors, МАСIS, папиллярная и фолликулярная карциномы, прогностические факторы, папілярна i фолікулярна карциноми, прогностичні чинники, UDC.616.441-006.6- 036.82 – 037, 3. Good health
Popis súboru: application/pdf
Prístupová URL adresa: http://journals.uran.ua/sr_med/article/download/174444/174726
http://journals.uran.ua/sr_med/article/view/174444
http://journals.uran.ua/sr_med/article/download/174444/174726
https://www.neliti.com/publications/313630/survival-of-patients-with-thyroid-papillary-and-follicular-carcinoma-similarity
http://journals.uran.ua/sr_med/article/view/174444 -
20
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Rheumatology Science and Practice; Vol 60, No 6 (2022); 618–623 ; Научно-практическая ревматология; Vol 60, No 6 (2022); 618–623 ; 1995-4492 ; 1995-4484
Predmety: прогностические факторы, “treat-to-target” strategy, minimal disease activity, prognostic factors, стратегия «лечение до достижения цели», минимальная активность заболевания
Popis súboru: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3253/2248; Насонов ЕЛ (ред.). Ревматология. Российские клинические рекомендации. М.:ГЭОТАР-Медиа;2017.; Coates LC, Moverley AR, McParland L, Brown S, Navarro-Coy N, O’Dwyer JL, et al. Effect of tight control of inflammation in early psoriatic arthritis (TICOPA): A UK multicentre, openlabel, randomised controlled trial. Lancet. 2015;386(10012):2489-2498. doi:10.1016/S0140-6736(15)00347-5; Coates LC, Fransen J, Helliwell PS. Defining minimal disease activity in psoriatic arthritis: a proposed objective target for treatment. Ann Rheum Dis. 2010;69(1):48-53. doi:10.1136/ard.2008.102053; Коротаева ТВ, Логинова ЕЮ, Гетия ТС, Насонов ЕЛ. Результаты применения стратегии «Лечение до достижения цели» у больных ранним псориатическим артритом через 1 год п осле начала терапии: данные исследования РЕМАРКА. Терапевтический архив. 2018;90(5):22-29. doi:10.26442/terarkh201890522-29; Chandran V, Bhella S, Schenta g C, Gladman DD. Functional assessment of chronic illness therapy-fatigue scale is valid in patients with psoriatic arthritis. Ann Rheum Dis. 2007;66(7): 936-939. doi:10.1136/ard.2006.065763; Cella D, Wilson H, Shalhoub H, Revicki DA, Cappelleri JC, Bushmakin AG, et al. Content validity and psychometric evaluation of Functional Assessment of Chronic Illness Therapy-Fatigue in patients with psoriatic arthritis. J Patient Rep Outcomes. 2019;3:30. doi:10.1186/s41687-019-0115-4; Huynh DH, Boyd TA, Etzel CJ, Cox V, Kremer J, Mease P, et al. Persistence of low disease activity after tumour necrosis factor inhibitor (TNFi) discontinuation in patients with psoriatic arthritis. RMD Open. 2017;3(1):e000395. doi:10.1136/rmdopen-2016-000395; Lubrano E, Perrotta FM, Scriffignano S, Coates LC, Helliwell P. Sustained very low disease activity and remission in psoriatic arthritis patients. Rheumatol Ther. 2019;6:521-528. doi:10.1007/s40744-019-00171-w; Alten R, Conaghan PG, Strand V, Sullivan E, Blackburn S, Tian H, et al. Unmet needs in psoriatic arthritis patients receiving immunomodulatory therapy: Results from a large multinational real-world study. Clin Rheumatol. 2019;38(6):1615-1626. doi:10.1007/s10067-019-04446-z; Логинова ЕЮ, Коротаева ТВ, Губарь ЕЕ, Корсакова ЮЛ, Седунова М.В., Приставский И.Н., и др. Влияние длительности псориатического артрита на достижение ремиссии и минимальной активности болезни на фоне терапии генноинженерными биологическими препаратами. Данные Общероссийского регистра пациентов с псориатическим артритом. Научно-практическая ревматология. 2020;58(6):695-700. doi:10.47360/1995-4484-2020-695-700; Queiro R, Seoane-Mato D, Laiz A, Agirregoikoa EG, Montilla C, Park HS, et al.; Proyecto REAPSER Study Group. Minimal disease activity (MDA) in patients with recent-onset psoriatic arthritis: Predictive model based on machine learning. Arthritis Res Ther. 2022;24(1):153. doi:10.1186/s13075-022-02838-2; Jadon DR, Stober C, Pennington SR, FitzGerald O. Applying precision medicine to unmet clinical needs in psoriatic disease. Nat Rev Rheumatol. 2020;16:609-627. doi:10.1038/s41584-020-00507-9; Gossec L, Baraliakos X, Kerschbaumer A, de Wit M, McInnes I, Dougados M, et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann Rheum Dis. 2020;79(6):700-712. doi:10.1136/annrheumdis-2020-217159; Brockbank JE, Stein M, Schentag CT, Gladman DD. Dactylitis in psoriatic arthritis: A marker for disease severity? Ann Rheum Dis. 2005;64(2):188-190. doi:10.1136/ard.2003.018184; Antony AS, Allard A, Rambojun A, Lovell CR, Shaddick G, Robinson G, et al. Psoriatic nail dystrophy is associated with erosive disease in the distal interphalangeal joints in psoriatic arthritis: A retrospective cohort study. J Rheumatol. 2019;46(9):1097-1102. doi:10.3899/jrheum.180796; Feced Olmos CM, Alvarez-Calderon O, Hervás Marín D, Ivorra Cortés J, Pujol Marco C, Román Ivorra JA. Relationship between structural damage with loss of strength and functional disability in psoriatic arthritis patients. Clin Biomech. 2019;68:169-174. doi:10.1016/j.clinbiomech.2019.06.009; Gossec L, Smolen JS, Ramiro S, de Wit M, Cutolo M, Dougados M, et al. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies: 2015 update. Ann Rheum Dis. 2016;75(3):499-510. doi:10.1136/annrheumdis-2015-208337; Gladman DD, Starr M, Cividino A, Gaudreau AJ, Jelley J, Nicholson D, et al. Canadian rheumatologists’ perspectives on moderate psoriatic arthritis and oligoarticular psoriatic arthritis. J Rheumatol. 2021;48(11):1692-1697. doi:10.3899/jrheum.201195
Nájsť tento článok vo Web of Science