Search Results - "ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ"
-
1
Source: IX Всероссийская Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».
Subject Terms: VTC4, полифосфаты, митохондрии, окислительное фосфорилирование, Saccharomyces cerevisiae, PPN1
-
2
Authors: et al.
Contributors: et al.
Source: Acta Biomedica Scientifica; Том 10, № 1 (2025); 103-114 ; 2587-9596 ; 2541-9420
Subject Terms: окислительное фосфорилирование, mitochondria, mitochondrial dysfunction, mitochondrial DNA, mitochondrial respiration, oxidative phosphorylation, митохондрии, митохондриальная дисфункция, митохондриальная ДНК, дыхание митохондрий
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/5219/2966; McDonagh T, Metra M. 2021 рекомендации ESC по диагностике и лечению острой и хронической сердечной недостаточности. Российский кардиологический журнал. 2023; 28(1): 5168. doi:10.15829/1560-4071-2023-5168; Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial fusion, fission, and mitophagy in cardiac diseases: Challenges and therapeutic opportunities. Antioxid Redox Signal. 2022; 36(13-15): 844-863. doi:10.1089/ars.2021.0145; Цыпленкова В.Г. Гистологические и ультраструктурные характеристики миокарда при сердечной недостаточности. Кардиология. 2013; 9: 58-62.; Khoynezhad A, Jalali Z, Tortolani AJ. Apoptosis: Pathophysiology and therapeutic implications for the cardiac surgeon. Ann Thorac Surg. 2004; 78(3): 1109-1118. doi:10.1016/j.athoracsur.2003.06.034; Wiessner M, Maroofian R, Ni MY, Pedroni A, Müller JS, Stucka R, et al. Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia. Brain. 2021; 144(5): 1422-1434. doi:10.1093/brain/awab041; Huang L, Chen H, Luo Y, Rivenson Y, Ozcan A. Recurrent neural network-based volumetric fluorescence microscopy. Light Sci Appl. 2021; 10(1): 62. doi:10.1038/s41377-021-00506-9; Судаков Н.П., Клименков И.В., Катышев А.И., Никифоров С.Б., Гольдберг О.А., Пушкарёв Б.Г., и др. Митохондриальная дисфункция при атеросклерозе и инфаркте миокарда: молекулярные и цитохимические маркеры. Acta biomedica scientifica. 2016; 1(3-2): 131-134. doi:10.12737/article_590823a517c941.46556762; Wong HH, Seet SH, Maier M, Gurel A, Traspas RM, Lee C, et al. Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. Am J Hum Genet. 2021; 108(7): 1301-1317. doi:10.1016/j.ajhg.2021.05.003; Fernström J, Ohlsson L, Asp M, Lavant E, Holck A, Grudet C, et al. Plasma circulating cell-free mitochondrial DNA in depressive disorders. PLoS One. 2021; 16(11): e0259591. doi:10.1371/journal.pone.0259591; Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, et al. Quantification of myocardial mitochondrial membrane potential using PET. Curr Cardiol Rep. 2021; 23(6): 70. doi:10.1007/s11886-021-01500-8; Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Biousse V, Vignal-Clermont C, et al. Efficacy and safety of intravitreal gene therapy for Leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology. 2021; 128(5): 649-660. doi:10.1016/j.ophtha.2020.12.012; Kuwahara Y, Roudkenar MH, Suzuki M, Urushihara Y, Fukumoto M, Saito Y, et al. The Involvement of mitochondrial membrane potential in cross-resistance between radiation and docetaxel. Int J Radiat Oncol Biol Phys. 2016; 96(3): 556-565. doi:10.1016/j.ijrobp.2016.07.002; Kadenbach B, Ramzan R, Moosdorf R, Vogt S. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion. 2011; 11(5): 700-706. doi:10.1016/j.mito.2011.06.001; Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 2018; 69: 62-72. doi:10.1016/j.ceca.2017.05.003; Glancy B, Willis WT, Chess DJ, Balaban RS. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry. 2013; 52(16): 2793-2809. doi:10.1021/bi3015983; Denton RM, McCormack JG, Edgell NJ. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980; 190(1): 107-117. doi:10.1042/bj1900107; Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 2020; 126(2): 280-293. doi:10.1161/CIRCRESAHA.119.316306; Duong QV, Hoffman A, Zhong K, Dessinger MJ, Zhang Y, Bazil JN. Calcium overload decreases net free radical emission in cardiac mitochondria. Mitochondrion. 2020; 51: 126-139. doi:10.1016/j.mito.2020.01.005; Kembro JM, Cortassa S, Aon MA. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol. 2014; 5: 257. doi:10.3389/fphys.2014.00257; D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, et al. The role of oxidative stress in cardiac disease: From physiological response to injury factor. Oxid Med Cell Longev. 2020; 2020: 5732956. doi:10.1155/2020/5732956; Guo Q, Bi J, Wang H, Zhang X. Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis. Emerg Microbes Infect. 2021; 10(1): 19-36. doi:10.1080/22221751.2020.1861913; Chinopoulos C. Mitochondrial permeability transition pore: Back to the drawing board. Neurochem Int. 2018; 117: 49-54. doi:10.1016/j.neuint.2017.06.010; Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: A molecular lesion with multiple drug targets. Trends Pharmacol Sci. 2019; 40(1): 50-70. doi:10.1016/j.tips.2018.11.004; Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 2017; 3(12): 857-870. doi:10.1016/j.trecan.2017.10.006; Shah SS, Lannon H, Dias L, Zhang JY, Alper SL, Pollak MR, et al. APOL1 kidney risk variants induce cell death via mitochondrial translocation and opening of the mitochondrial permeability transition pore. JAm Soc Nephrol. 2019; 30(12): 2355-2368. doi:10.1681/ASN.2019020114; Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020; 21(5): 268-283. doi:10.1038/s41580-020-0227-y; Rambold AS, Pearce EL. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 2018; 39(1): 6-18. doi:10.1016/j.it.2017.08.006; Guntur AR, Gerencser AA, Le PT, DeMambro VE, Bornstein SA, Mookerjee SA, et al. Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J Bone Miner Res. 2018; 33(6): 1052- 1065. doi:10.1002/jbmr.3390; Dorr BM, Fuerst DE. Enzymatic amidation for industrial applications. Curr Opin Chem Biol. 2018; 43: 127-133. doi:10.1016/j.cbpa.2018.01.008; Ishida A, Yamada Y, Kamidate T. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation. Anal Bioanal Chem. 2008; 392(5): 987-994. doi:10.1007/s00216-008-2334-z; Ušaj M, Moretto L, Vemula V, Salhotra A, Månsson A. Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol. 2021; 4(1): 64. doi:10.1038/s42003-020-01574-0; Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR, Ingold MR, et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem Biol. 2018; 25(2): 206-214.e11. doi:10.1016/j.chembiol.2017.10.010; Mita M, Sugawara I, Harada K, Ito M, Takizawa M, Ishida K, et al. Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chem Biol. 2022; 29(1): 98-108.e4. doi:10.1016/j.chembiol.2021.06.002; Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, et al. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021; 12(2): 237-251. doi:10.1002/jcsm.12654; Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 2022; 23(2): 141-161. doi:10.1038/s41580-021-00415-0; Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K. Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer druginduced apoptosis. J Exp Med. 1998; 188(5): 979-984. doi:10.1084/jem.188.5.979; Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016; 2016: 1245049. doi:10.1155/2016/1245049; Khacho M, Tarabay M, Patten D, Khacho P, MacLaurin JG, Guadagno J, et al. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat Commun. 2014; 5: 3550. doi:10.1038/ncomms4550; Wang M, Ren X, Wang L, Lu X, Han L, Zhang X, et al. A functional analysis of mitochondrial respiratory chain cytochrome bc1 complex in Gaeumannomyces tritici by RNA silencing as a possible target of carabrone. Mol Plant Pathol. 2020; 21(12): 1529-1544. doi:10.1111/mpp.12993; Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of mitochondrial electron transport chain assembly. JMol Biol. 2018; 430(24): 4849-4873. doi:10.1016/j.jmb.2018.09.016; Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martínez-Reyes I, et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 2019; 565(7740): 495-499. doi:10.1038/s41586-018-0846-z; Nesci S, Pagliarani A, Algieri C, Trombetti F. Mitochondrial F-type ATP synthase: Multiple enzyme functions revealed by the membrane-embedded FO structure. Crit Rev Biochem Mol Biol. 2020; 55(4): 309-321. doi:10.1080/10409238.2020.1784084; Banh RS, Iorio C, Marcotte R, Xu Y, Cojocari D, Rahman AA, et al. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nat Cell Biol. 2016; 18(7): 803-813. doi:10.1038/ncb3376; Baumann K. mtDNA robs nuclear dNTPs. Nat Rev Mol Cell Biol. 2019; 20(11): 663. doi:10.1038/s41580-019-0182-7; Zhu SC, Chen C, Wu YN, Ahmed M, Kitmitto A, Greenstein AS, et al. Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Pflugers Arch. 2020; 472(3): 367-374. doi:10.1007/s00424-020-02355-8; Gu X, Ma Y, Liu Y, Wan Q. Measurement of mitochondrial respiration in adherent cells by seahorse XF96 cell mito stress test. STAR Protoc. 2020; 2(1): 100245. doi:10.1016/j.xpro.2020.100245; Eagleson KL, Villaneuva M, Southern RM, Levitt P. Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress. 2020; 13: 100251. doi:10.1016/j.ynstr.2020.100251; Nishida M, Yamashita N, Ogawa T, Koseki K, Warabi E, Ohue T, et al. Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/ mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. JImmunother Cancer. 2021; 9(9): e002954. doi:10.1136/jitc-2021-002954; Nishida Y, Nawaz A, Kado T, Takikawa A, Igarashi Y, Onogi Y, et al. Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J Cachexia Sarcopenia Muscle. 2020; 11(1): 241-258. doi:10.1002/jcsm.12530; Панов А.В., Дикалов С.И., Даренская М.А., Рычкова Л.В., Колесникова Л.И., Колесников С.И. Митохондрии: старение, метаболический синдром и сердечно-сосудистая патология. Становление новой парадигмы. Acta biomedica scientifica. 2020; 5(4): 33-44. doi:10.29413/ABS.2020-5.4.5; Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: Role in heart, skeletal muscle and adi pose tissue. J Cachexia Sarcopenia Muscle. 2017; 8(3): 349-369. doi:10.1002/jcsm.12178; Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013; 47(1): 9-23. doi:10.1007/s12035-012-8344-z; Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc. 2017; 92(3): 1459-1474. doi:10.1111/brv.12291; Zhu X, Liu G, Bu Y, Zhang J, Wang L, Tian Y, et al. In situ monitoring of mitochondria regulating cell viability by the RNAspecific fluorescent photosensitizer. Anal Chem. 2020; 92(15): 10815-10821. doi:10.1021/acs.analchem.0c02298; Yang J, Chen Z, Liu N, Chen Y. Ribosomal protein L10 in mitochondria serves as a regulator for ROS level in pancreatic cancer cells. Redox Biol. 2018; 19: 158-165. doi:10.1016/j.redox.2018.08.016; Jiang X, Wang L, Carroll SL, Chen J, Wang MC, Wang J. Challenges and opportunities for small-molecule fluorescent probes in redox biology applications. Antioxid Redox Signal. 2018; 29(6): 518-540. doi:10.1089/ars.2017.7491; Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med. 2018; 122: 202-220. doi:10.1016/j.freeradbiomed.2018.04.005; Gotham JP, Li R, Tipple TE, Lancaster JR Jr, Liu T, Li Q. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med. 2020; 154: 84-94. doi:10.1016/j.freeradbiomed.2020.04.020; Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S, Kreisel K, et al. Elimination of rNMPs from mitochondrial DNA has no effect on its stability. Proc Natl Acad Sci U S A. 2020; 117(25): 14306-14313. doi:10.1073/pnas.1916851117; Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, et al. Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev. 2020; 63: 101168. doi:10.1016/j.arr.2020.101168; Корепанов В.А., Реброва Т.Ю., Атабеков Т.А., Афанасьев С.А. Возможная роль митохондриальной дисфункции в аритмогенезе при ишемической болезни сердца. Сибирский журнал клинической и экспериментальной медицины. 2023; 38(4): 236-242. doi:10.29001/2073-8552-2023-38-4-236-242; Kuzheleva EA, Garganeeva AA, Tukish OV, Nesova AK, Golubenko MV, Andreev SL, et al. The role of rs2238296 of the mitochondrial DNA polymerase gamma gene in combination with polymorphic variants of antioxidant defense genes in the development of postinfarction left ventricular aneurysm. Russian Journal of Genetics. 2023; 59: 97-103. doi:10.1134/s1022795423010076; Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005; 309(5733): 481-484. doi:10.1126/science.1112125; Понасенко А.В., Цепокина А.В., Тхоренко Б.А., Голубенко М.В., Губиева Е.К., Трефилова Л.П. Изменчивость митохондриальной ДНК в развитии атеросклероза и инфаркта миокарда (обзор литературы). Комплексные проблемы сердечно-сосудистых заболеваний. 2018; 7(4S): 75-85. doi:10.17802/2306-1278-2018-7-4S-75-85; Wang J, Balciuniene J, Diaz-Miranda MA, McCormick EM, Aref-Eshghi E, Muir AM, et al. Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease. Mol Genet Metab. 2022; 135(1): 93-101. doi:10.1016/j.ymgme.2021.12.006; Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021; 17(1): 1-382. doi:10.1080/15548627.2020.1797280; Li H, Slone J, Fei L, Huang T. Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 2019; 8(6): 608. doi:10.3390/cells8060608; West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017; 17(6): 363-375. doi:10.1038/nri.2017.21; Carvalho PA, Chiu ML, Kronauge JF, Kawamura M, Jones AG, Holman BL, et al. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. JNucl Med. 1992; 33(8): 1516-1522.; Backus M, Piwnica-Worms D, Hockett D, Kronauge J, Lieberman M, Ingram P, et al. Microprobe analysis of Tc-MIBI in heart cells: Calculation of mitochondrial membrane potential. Am J Physiol. 1993; 265(1 Pt 1): C178-С187. doi:10.1152/ajpcell.1993.265; Kawamoto A, Kato T, Shioi T, Okuda J, Kawashima T, Tamaki Y, et al. Measurement of technetium-99m sestamibi signals in rats administered a mitochondrial uncoupler and in a rat model of heart failure. PLoS One. 2015; 10(1): e0117091. doi:10.1371/journal.pone.0117091; Crane P, Laliberté R, Heminway S, Thoolen M, Orlandi C. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med. 1993; 20(1): 20-25. doi:10.1007/BF02261241; Hayashi D, Ohshima S, Isobe S, Cheng XW, Unno K, Funahashi H, et al. Increased (99m)Tc-sestamibi washout reflects impaired myocardial contractile and relaxation reserve during dobutamine stress due to mitochondrial dysfunction in dilated cardiomyopathy patients. J Am Coll Cardiol. 2013; 61(19): 2007-2017. doi:10.1016/j.jacc.2013.01.074; Tsampasian V, Swift AJ, Assadi H, Chowdhary A, Swoboda P, Sammut E, et al. Myocardial inflammation and energetics by cardiac MRI: A review of emerging techniques. BMC Med Imaging. 2021; 21(1): 164. doi:10.1186/s12880-021-00695-0; Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, et al. 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations. NMR Biomed. 2020; 34(5): e4246. doi:10.1002/nbm.4246; Holley CT, Long EK, Lindsey ME, McFalls EO, Kelly RF. Recovery of hibernating myocardium: What is the role of surgical revascularization? JCard Surg. 2015; 30(2): 224-231. doi:10.1111/jocs.12477; Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med. 2020; 24(5): 2717-2729. doi:10.1111/jcmm.14953; Unno K, Isobe S, Izawa H, Cheng XW, Kobayashi M, Hirashiki A, et al. Relation of functional and morphological changes in mitochondria to myocardial contractile and relaxation reserves in asymptomatic to mildly symptomatic patients with hypertrophic cardiomyopathy. Eur HeartJ. 2009; 30(15): 1853-1862. doi:10.1093/eurheartj/ehp184; Афанасьев С.А., Муслимова Э.Ф, Реброва Т.Ю., Цапко Л.П., Керчева М.А., Голубенко М.В. Особенности функционального состояния митохондрий лейкоцитов периферической крови у пациентов с острым инфарктом миокарда. Бюллетень экспериментальной биологии и медицины. 2020; 169(4): 435-437. doi:10.1007/s10517-020-04903-9; Tsampasian V, Cameron D, Sobhan R, Bazoukis G, Vassiliou VS. Phosphorus magnetic resonance spectroscopy (31P MRS) and cardiovascular disease: The importance of energy. Medicina (Kaunas). 2023; 59(1): 174. doi:10.3390/medicina59010174; https://www.actabiomedica.ru/jour/article/view/5219
-
3
Source: Nauchno-prakticheskii zhurnal «Patogenez». :66-70
-
4
Authors: et al.
Subject Terms: експериментальна опікова хвороба, окисне фосфорилювання, слинні залози, экспериментальная ожоговая болезнь, окислительное фосфорилирование, слюнные железы, experimental burn illness, oxidizing phosphorylating, salivary glands
File Description: application/pdf
Relation: Зміни окисного фосфорилювання в тканинах слинних залоз при гострому опіковому шоці / В. В. Бондаренко, Д. В. Стебловський, І. В. Яценко [та ін.] / Вісник проблем біології і медицини. – 2019. – Вип. 4, том 1 (153). – С. 72–75.; https://repository.pdmu.edu.ua/handle/123456789/11721
-
5
Authors:
Source: Nauka v Olimpijskom Sporte, Vol 0, Iss 2, Pp 91-98 (2016)
Subject Terms: физическая нагрузка, ацидоз, работоспособность, АТФазная реакция, гликолиз, окислительное фосфорилирование, Sports, GV557-1198.995
File Description: electronic resource
-
6
Authors: et al.
File Description: text/html
-
7
Authors: et al.
File Description: text/html
-
8
Source: Nauka v Olimpijskom Sporte, Vol 0, Iss 2, Pp 91-98 (2016)
-
9
Subject Terms: клеточное дыхание, окислительное фосфорилирование, фосфорилирование, биологическое окисление, дыхательный контроль
File Description: application/pdf
Access URL: https://lib.vsu.by/jspui/handle/123456789/27151
-
10
Subject Terms: клеточное дыхание, окислительное фосфорилирование, фосфорилирование, биологическое окисление, дыхательный контроль
File Description: application/pdf
Access URL: https://rep.vsu.by/handle/123456789/27151
-
11
Source: Медицина неотложных состояний.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, ЦЕНТРОГЕННАЯ ЛИХОРАДКА,ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ,МИТОХОНДРИАЛЬНАЯ ДИСФУНКЦИЯ,НЕСТЕРОИДНЫЕ ПРОТИВОВОСПАЛИТЕЛЬНЫЕ СРЕДСТВА,ТЯЖЕЛАЯ ЧЕРЕПНО-МОЗГОВАЯ ТРАВМА,МОЗГОВОЙ ИНСУЛЬТ,ЦЕНТРОГЕННА ЛИХОМАНКА,ОКИСЛЮВАЛЬНЕ ФОСФОРИЛЮВАННЯ,МіТОХОНДРіАЛЬНА ДИСФУНКЦіЯ,НЕСТЕРОїДНі ПРОТИЗАПАЛЬНі ЗАСОБИ,ТЯЖКА ЧЕРЕПНО-МОЗКОВА ТРАВМА,МОЗКОВИЙ іНСУЛЬТ,CENTRAL FEVER,OXIDATIVE PHOSPHORYLATION,MITOCHONDRIAL DYSFUNCTION,NON-STEROIDAL ANTI-INFLAMMATORY DRUGS,SEVERE TRAUMATIC BRAIN INJURY,CEREBRAL STROKE, 3. Good health
File Description: text/html
-
12
Authors: et al.
Subject Terms: ATP, POWERLESS LABOUR, CYTOKINES, OXIDATIVE PHOSPHORYLATION, СЛАБОСТЬ РОДОВОЙ ДЕЯТЕЛЬНОСТИ, ЦИТОКИНЫ, АТФ, ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ
File Description: application/pdf
Relation: Уральский медицинский журнал. 2013. T. 113, № 8.; http://elib.usma.ru/handle/usma/14959
Availability: http://elib.usma.ru/handle/usma/14959
-
13
Authors: et al.
Subject Terms: КРЫСА, МИТОХОНДРИЯ, ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ, ОСТРАЯ ГИПОКСИЯ, АНТИГИПОКСАНТ
File Description: text/html
-
14
Authors: et al.
Subject Terms: КРЫСА, МИТОХОНДРИЯ, ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ, ГИПОКСИЯ, АНТИГИПОКСАНТЫ
File Description: text/html
-
15
Authors: et al.
Subject Terms: СТРЕСС, АНАЛОГИ ГАМК, ДЫХАНИЕ И ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ
File Description: text/html
-
16
Authors: et al.
Subject Terms: МИТОХОНДРИИ БУРОЙ ЖИРОВОЙ ТКАНИ, АДЕНИННУКЛЕОТИДТРАНСЛОКАЗА, БЕЛОК-РАЗОБЩИТЕЛЬ (UCP1), F1FO-ATФ-СИНТЕТАЗА, ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ, РАЗОБЩЕНИЕ ЖИРНЫМИ КИСЛОТАМИ, АПОПТОЗ, UNCOUPLING PROTEIN 1 (UCP1)
File Description: text/html
-
17
Authors:
Subject Terms: МИТОХОНДРИИ, постинфарктный миокард, окислительное фосфорилирование, жирные кислоты
File Description: text/html
-
18
Authors: Хашаев, Заур
Subject Terms: БИОФИЗИКА, ПЕРЕДАЧА ИНФОРМАЦИИ, СИНАПТИЧЕСКАЯ ПЕРЕДАЧА, МИНИАТЮРНЫЕ ПОТЕНЦИАЛЫ, ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ, АЛКАЛОИДЫ
File Description: text/html
-
19
Authors:
Subject Terms: МЕТАБОЛИЧЕСКИЙ СИНДРОМ, АДЕНОЗИНМОНОФОСФАТ-АКТИВИРОВАННАЯ ПРОТЕИНКИНАЗА, РЕЦЕПТОР, АКТИВИРУЮЩИЙ ПРОЛИФЕРАЦИЮ ПЕРОКСИСОМ, БЕЛОК, РАЗОБЩАЮЩИЙ ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ
File Description: text/html
-
20
Authors: et al.
File Description: text/html
Nájsť tento článok vo Web of Science