Search Results - "НЕВРОЛОГИЧЕСКИЕ ЗАБОЛЕВАНИЯ"

Refine Results
  1. 1

    Source: One Health & Risk Management ; Vol. 6 No. 4 (2025) ; Vol 6 Nr 4 (2025) ; Том 6 № 4 (2025) ; 2587-3466 ; 2587-3458 ; 10.38045/ohrm.2025.6(4)

  2. 2

    Subject Geographic: USPU

    Relation: Специальное образование. 2022. № 4 (68)

  3. 3

    Source: Psychological and Pedagogical Support of General, Special and Inclusive Education of Children and Adults; 152-154 ; Психолого-педагогическое сопровождение общего, специального и инклюзивного образования детей и взрослых; 152-154

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907688-23-0; https://phsreda.com/e-articles/10482/Action10482-105899.pdf; Архипова Е.Ф. Коррекционно-логопедическая работа по преодолению стертой дизартрии у детей / Е.Ф. Архипова. ‒ М.: Астрель, 2008. ‒ 72 с.; Власенко И.Т. Методы обследования речи детей. Выявление и преодоление речевых нарушений в дошкольном возрасте / И.Т. Власенко, Г.В. Чиркина, И.Ю. Кондратенко. ‒ М.: Айрис-пресс, 2005. ‒ 177 с.; Волкова Г.А. Методика психолого-логопедического обследования детей с нарушениями речи. Вопросы дифференциальной диагностики / Г.А. Волкова. ‒ СПб., 2005. ‒ 144 с.; Гаркуша Ю.Ф. Коррекционно-педагогическая работа в дошкольных учреждениях для детей с нарушениями речи / Ю.Ф. Гаркуша. ‒ М.: Владос, 2000. ‒ 158 с.; Гвоздев А.Н. Вопросы изучения детской речи / А.Н. Гвоздев. ‒ М.: АПИ РСФСР, 1961. ‒ 471 с.; Грибова О.Е. Технология организации логопедического обследования / О.Е. Грибова. ‒ М.: АИРИШ, 2008. ‒ 96 с.; Степанова О.А. Дошкольная логопедическая служба / О.А. Степанова. ‒ М.: Сфера, 2006. ‒ 190 с.; Шаховская Е.И. Обследование детей с нарушением речи в условиях медико-педагогических комиссий / Е.И. Шаховская. ‒ М.: МГПИ, 1978. – С. 4–16.; https://phsreda.com/article/105899/discussion_platform

  4. 4

    Source: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 16, No 3 (2023); 466-480 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 16, No 3 (2023); 466-480 ; 2070-4933 ; 2070-4909

    File Description: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/891/494; Shindo Y., Witt E., Han D., et al. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol. 1994; 102 (1): 122–4. https://doi.org/10.1111/1523-1747.ep12371744.; Garrido-Maraver J., Cordero M.D., Oropesa-Avila M., et al. Clinical applications of coenzyme Q10. Front Biosci (Landmark Ed). 2014; 19 (4): 619–33. https://doi.org/10.2741/4231.; Торшин И.Ю., Громова О.А. Альтернативные подходы к коррекции гиперхолестеринемии: эффекты стандартизированных экстрактов красного риса и его синергистов. Лечебное дело. 2021; 1: 89–98. https://doi.org/10.24412/2071-5315-2021-12283.; Белова О.В., Арефьева Т.И., Москвина С.Н. Иммуновоспалительные аспекты болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020; 120 (2): 110–9. https://doi.org/10.17116/jnevro2020120021110.; Ghorbani S., Yong V.W. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain. 2021; 144 (7): 1958–73. https://doi.org/10.1093/brain/awab059.; Torshin I.Yu., Rudakov K.V. On metric spaces arising during formalization of recognition and classification problems. Part 1: Properties of compactness. Pattern Recognit Image Anal. 2016; 26 (2): 274–84. https://doi.org/10.1134/S1054661816020255.; Torshin I.Yu., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: Metric approach within the framework of the theory of classification of feature values. Pattern Recognit Image Anal. 2017; 27 (2): 184–99. https://doi.org/10.1134/S1054661817020110.; Torshin I.Yu., Rudakov K.V. On metric spaces arising during formalization of problems of recognition and classification. Part 2: Density properties. Pattern Recognit Image Anal. 2016; 26 (3): 483–96. https://doi.org/10.1134/S1054661816030202.; Hajiluian G., Heshmati J., Jafari Karegar S., et al. Diabetes, age, and duration of supplementation subgroup analysis for the effect of coenzyme Q10 on oxidative stress: a systematic review and metaanalysis. Complement Med Res. 2021; 28 (6): 557–70. https://doi.org/10.1159/000515249.; Shimizu K., Kon M., Tanimura Y., et al. Coenzyme Q10 supplementation downregulates the increase of monocytes expressing tolllike receptor 4 in response to 6-day intensive training in kendo athletes. Appl Physiol Nutr Metab. 2015; 40 (6): 575–81. https://doi.org/10.1139/apnm-2014-0556.; Aslani Z., Shab-Bidar S., Fatahi S., Djafarian K. Effect of coenzyme Q10 supplementation on serum of high sensitivity c-reactive protein level in patients with cardiovascular diseases: a systematic review and meta-analysis of randomized controlled trials. Int J Prev Med. 2018; 9: 82. https://doi.org/10.4103/ijpvm.IJPVM_263_17.; Farsi F., Heshmati J., Keshtkar A., et al. Can coenzyme Q10 supplementation effectively reduce human tumor necrosis factor-α and interleukin-6 levels in chronic inflammatory diseases? A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2019; 148: 104290. https://doi.org/10.1016/j.phrs.2019.104290.; Fan L., Feng Y., Chen G.C., et al. Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and metaanalysis of randomized controlled trials. Pharmacol Res. 2017; 119: 128–36. https://doi.org/10.1016/j.phrs.2017.01.032.; Rasoolzadeh E.A., Shidfar F., Rasoolzadeh R.A., Hezaveh Z.S. The effect of coenzyme Q10 on periodontitis: a systematic review and metaanalysis of clinical trials. J Evid Based Dent Pract. 2022; 22 (2): 101710. https://doi.org/10.1016/j.jebdp.2022.101710.; Liu Z., Tian Z., Zhao D., et al. Effects of coenzyme Q10 supplementation on lipid profiles in adults: a meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2022; 108 (1): 232–49. https://doi.org/10.1210/clinem/dgac585.; Al Saadi T., Assaf Y., Farwati M., et al. Coenzyme Q10 for heart failure. Cochrane Database Syst Rev. 2021; 2 (2): CD008684. https://doi.org/10.1002/14651858.CD008684.pub3.; Qu H., Guo M., Chai H., et al. Effects of coenzyme Q10 on statininduced myopathy: an updated meta-analysis of randomized controlled trials. J Am Heart Assoc. 2018; 7 (19): e009835. https://doi.org/10.1161/JAHA.118.009835.; Sun I.O., Jin L., Jin J., et al. The effects of addition of coenzyme Q10 to metformin on sirolimus-induced diabetes mellitus. Korean J Intern Med. 2019; 34 (2): 365–74. https://doi.org/10.3904/kjim.2017.004.; Moradi M., Haghighatdoost F., Feizi A., et al. Effect of coenzyme Q10 supplementation on diabetes biomarkers: a systematic review and meta-analysis of randomized controlled clinical trials. Arch Iran Med. 2016; 19 (8): 588–96.; Liang Y., Zhao D., Ji Q., et al. Effects of coenzyme Q10 supplementation on glycemic control: a GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. EClinicalMedicine. 2022; 52: 101602. https://doi.org/10.1016/j.eclinm.2022.101602.; Izadi A., Ebrahimi S., Shirazi S., et al. Hormonal and metabolic effects of coenzyme Q10 and/or vitamin E in patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019; 104 (2): 319–27. https://doi.org/10.1210/jc.2018-01221.; Taghizadeh S., Izadi A., Shirazi S., et al. The effect of coenzyme Q10 supplementation on inflammatory and endothelial dysfunction markers in overweight/obese polycystic ovary syndrome patients. Gynecol Endocrinol. 2021; 37 (1): 26–30. https://doi.org/10.1080/09513590.2020.1779689.; Zhang T., He Q., Xiu H., et al. Efficacy and safety of coenzyme Q10 supplementation in the treatment of polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Sci. 2023; 30 (4): 1033– 48. https://doi.org/10.1007/s43032-022-01038-2.; Chen K., Chen X., Xue H., et al. Coenzyme Q10 attenuates high-fat diet-induced non-alcoholic fatty liver disease through activation of the AMPK pathway. Food Funct. 2019; 10 (2): 814–23. https://doi.org/10.1039/c8fo01236a.; Jiang Y.J., Jin J., Nan Q.Y., et al. Coenzyme Q10 attenuates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in unilateral ureteral obstruction. Int Immunopharmacol. 2022; 108: 108868. https://doi.org/10.1016/j.intimp.2022.108868.; Alehagen U., Aaseth J., Alexander J., et al. Selenium and coenzyme Q10 supplementation improves renal function in elderly deficient in selenium: observational results and results from a subgroup analysis of a prospective randomised double-blind placebo-controlled trial. Nutrients. 2020; 12 (12): 3780. https://doi.org/10.3390/nu12123780.; Zahed N.S., Ghassami M., Nikbakht H. Effects of coenzyme Q10 supplementation on C-reactive protein and homocysteine as the inflammatory markers in hemodialysis patients; a randomized clinical trial. J Nephropathol. 2016; 5 (1): 38–43. https://doi.org/10.15171/jnp.2016.07.; Drovandi S., Lipska-Ziętkiewicz B.S., Ozaltin F., et al. Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency. Kidney Int. 2022; 102 (3): 604–12. https://doi.org/10.1016/j.kint.2022.04.029.; Bakhshayeshkaram M., Lankarani K.B., Mirhosseini N., et al. The effects of coenzyme Q10 supplementation on metabolic profiles of patients with chronic kidney disease: a systematic review and metaanalysis of randomized controlled trials. Curr Pharm Des. 2018; 24 (31): 3710–23. https://doi.org/10.2174/1381612824666181112112857.; Orsucci D., Mancuso M., Ienco E.C., et al. Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Curr Med Chem. 2011; 18 (26): 4053–64. https://doi.org/10.2174/092986711796957257.; Yang X., Zhang Y., Xu H., et al. Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr Top Med Chem. 2016; 16 (8): 858–66. https://doi.org/10.2174/1568026615666150827095252.; Shinkai T., Nakashima M., Ohmori O., et al. Coenzyme Q10 improves psychiatric symptoms in adult-onset mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes: a case report. Aust N Z J Psychiatry. 2000; 34 (6): 1034–5. https://doi.org/10.1080/000486700286.; Chang Y., Huang S.K., Wang S.J. Coenzyme Q10 inhibits the release of glutamate in rat cerebrocortical nerve terminals by suppression of voltage-dependent calcium influx and mitogen-activated protein kinase signaling pathway. J Agric Food Chem. 2012; 60 (48): 11909–18. https://doi.org/10.1021/jf302875k.; Lee D., Shim M.S., Kim K.Y., et al. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2014; 55 (2): 993–1005. https://doi.org/10.1167/iovs.13-12564.; Lu C.J., Guo Y.Z., Zhang Y., et al. Coenzyme Q10 ameliorates cerebral ischemia reperfusion injury in hyperglycemic rats. Pathol Res Pract. 2017; 213 (9): 1191–9. https://doi.org/10.1016/j.prp.2017.06.005.; Ibrahim Fouad G. Combination of omega 3 and coenzyme Q10 exerts neuroprotective potential against hypercholesterolemia-induced Alzheimer's-like disease in rats. Neurochem Res. 2020; 45 (5): 1142– 55. https://doi.org/10.1007/s11064-020-02996-2.; Omidi G., Karimi S.A., Shahidi S., et al. Coenzyme Q10 supplementation reverses diabetes-related impairments in long-term potentiation induction in hippocampal dentate gyrus granular cells: an in vivo study. Brain Res. 2020; 1726: 146475. https://doi.org/10.1016/j.brainres.2019.146475.; Shi T.J., Zhang M.D., Zeberg H., et al. Coenzyme Q10 prevents peripheral neuropathy and attenuates neuron loss in the db-/dbmouse, a type 2 diabetes model. Proc Natl Acad Sci U S A. 2013; 110 (2): 690– 5. https://doi.org/10.1073/pnas.1220794110.; Sadeghiyan Galeshkalami N., Abdollahi M., Najafi R., et al. Alphalipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sci. 2019; 216: 101–10. https://doi.org/10.1016/j.lfs.2018.10.055.; Kandhare A.D., Ghosh P., Ghule A.E., Bodhankar S.L. Elucidation of molecular mechanism involved in neuroprotective effect of coenzyme Q10 in alcohol-induced neuropathic pain. Fundam Clin Pharmacol. 2013; 27 (6): 603–22. https://doi.org/10.1111/fcp.12003.; Jiménez-Jiménez F.J., Alonso-Navarro H., García-Martín E., Agúndez J.A.G. Coenzyme Q10 and Parkinsonian syndromes: a systematic review. J Pers Med. 2022; 12 (6): 975. https://doi.org/10.3390/jpm12060975.; Liu J., Wang L.N., Zhan S.Y., Xia Y. Coenzyme Q10 for Parkinson's disease. Cochrane Database Syst Rev. 2012; 5: CD008150. https://doi.org/10.1002/14651858.CD008150.pub3.; Markley H.G. Coenzyme Q10 and riboflavin: the mitochondrial connection. Headache. 2012; 52 (Suppl. 2): 81–7. https://doi.org/10.1111/j.1526-4610.2012.02233.x.; Sazali S., Badrin S., Norhayati M.N., Idris N.S. Coenzyme Q10 supplementation for prophylaxis in adult patients with migraine-a metaanalysis. BMJ Open. 2021; 11 (1): e039358. https://doi.org/10.1136/bmjopen-2020-039358.; Maguire Á., Hargreaves A., Gill M. Coenzyme Q10 and neuropsychiatric and neurological disorders: relevance for schizophrenia. Nutr Neurosci. 2020; 23 (10): 756–69. https://doi.org/10.1080/1028415X.2018.1556481.; https://www.pharmacoeconomics.ru/jour/article/view/891

  5. 5
  6. 6
  7. 7
  8. 8

    Source: Journal Infectology; Том 14, № 2 (2022); 65-72 ; Журнал инфектологии; Том 14, № 2 (2022); 65-72 ; 2072-6732 ; 10.22625/2072-6732-2022-14-2

    File Description: application/pdf

    Relation: https://journal.niidi.ru/jofin/article/view/1354/974; Center for Systems Science and Engineering // COVID-19 content portal. URL:www.systems.jhu.edu/research/public-health/ncov/ (дата обращения: 09.05.2022). Saad I. COVID-19: breaking down a global health crisis / Saad I. [et al.] // Ann Clin Microbiol Antimicrob. – 2021. Vol.20, №35.; Galea M. Neurological manifestations and pathogenic mechanisms of COVID-19 / Galea M. [et al.] // Neurological Research. – 2022. – Р. 1-12.; Лобзин, Ю.В. COVID-19-ассоциированный педиатрический мультисистемный воспалительный синдром / Ю.В. Лобзин [и др.] // Медицина экстремальных ситуаций. – 2021. – № 2. – С. 13–19.; Mahboubi M. Neurological complications associated with Covid-19; molecular mechanisms and therapeutic approaches / Mahboubi M. [et al.] // // Reviews in Medical Virology. – 2022. – Р. e2334.; Manzano G. Acute disseminated encephalomyelitis and acute hemorrhagic leukoencephalitis following COVID-19: systematic review and meta-synthesis / Manzano G. [et al.] // Neurology Neuroimmunology Neuroinflammation. – 2021. Vol.8, №6. – Р. e1080.; Ariño H. Neuroimmune disorders in COVID-19 / Ariño H. [et al.] // Journal of Neurology. – 2022. – Р. 1-13.; Molina А.Е. SARS-CoV-2, a new causative agent of Guillain-Barré syndrome? / Molina А.Е. [et al.] // Med Intensiva. – 2022. – Vol.46, № 2. – Р. 110-111. Abu-Rumeileh S. Guillain–Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases / Abu-Rumeileh S. [et al.] // Journal of neurology. 2021. – Vol.268, № 4. – Р. 1133-1170.; Dalakas M.C. Guillain-Barré syndrome: The first documented COVID-19–triggered autoimmune neurologic disease: More to come with myositis in the offing / Dalakas M.C. // Neurology Neuroimmunology Neuroinflammation. – 2020. – Vol.7, №5.; Seyede M. Guillain-Barré/Miller Fisher overlap syndrome in a patient after coronavirus disease-2019 infection: a case report / Seyede M. [et al.] // J Med Case Rep. – 2022. – Vol.16,№1.; Keddie S. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome / Keddie S. // Brain. – 2021. – Vol.144,№2. – Р. 682-693.; Sriwastava S. Guillain Barré Syndrome and its variants as a manifestation of COVID-19: A systematic review of case reports and case series / Sriwastava S. [et al.] // Journal of the neurological sciences. – 2021. – Vol. 15, №420. – Р. 117263.; Laved A. Neurological associations of SARS-cov-2 infection: a systematic review / Laved A. // CNS Neurol Disord Drug Targets. – 2022. – Vol. 21, №3. – P. 246-258.; Mohammad А. Guillain Barre Syndrome as a Complication of COVID-19: A Systematic Review / Mohammad А. [et al.] // Can J Neurol Sci. – 2022. – №1. – P. 1-11.; Finsterer J. Guillain-Barré syndrome is immunogenic in SARS-CoV-2 infected / Finsterer J. [et al.] // J Med Virol. 2022. – Vol. 94, №1. – P. 22-23.; Marie I. Intravenous immunoglobulin-associated arterial and venous thrombosis; report of a series and review of the literature / Marie I. [et al.] // British Journal of Dermatology. 2006. – №4. – Р. 714-721.; Hoepner R. Is COVID-19 severity associated with reduction in T lymphocytes in anti-CD20-treated people with multiple sclerosis or neuromyelitis optica spectrum disorder? / Hoepner R. [et al.] // CNS Neurosci Ther. – 2022. – Vol.28, №6. – P.971-973.; Xia H. Evasion of type I interferon by SARS-CoV-2 / Xia H. [et al.] // Cell reports. – 2020. – Vol. 33, №1. – Р. 108234.; Sormani M. DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France / Sormani M. [et al.] // Annals of Clinical and Translational Neurology. – 2021. – Vol.8, №8. Р. 1738-1744.; Finsterer J. SARS-CoV-2 triggered relapse of multiple sclerosis / Finsterer J. // Clin Neurol Neurosurg. – 2022. №215. – Р.207-210.; Alroughani R. Prevalence, severity, outcomes, and risk factors of COVID-19 in multiple sclerosis: an observational study in the Middle East / Alroughani R. [et al.] // J Clin Neurosci. – 2022. – №99. – P. 311-316.; Wang Y. SARS-CoV-2-associated acute disseminated encephalomyelitis: a systematic review of the literature / Wang Y. [et al.] // Journal of Neurology. – 2021. – Р.1-22.; Wang C. Assessment and management of acute disseminated encephalomyelitis (ADEM) in the pediatric patient / Wang C. // Pediatric Drugs. – 2021. – Vol.23(3);213-221.; Esmaeili S. Acute disseminated encephalitis (ADEM) as the first presentation of COVID-19; a case report / Esmaeili S. [et al.] // Ann Med Surg (Lond). – 2022. – №77. – P. 103511.; Gilhus N.E. Myasthenia gravis: subgroup classification and therapeutic strategies / Gilhus N.E., Verschuuren J. // Lancet Neurol. 2015; Vol.14, №10. – Р. 1023-36.; Baig A.M. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms / Baig A.M. [et al.] // ACS Chem Neurosci. – 2020. – Vol.11, №7. – Р.995-998.; Liu R. Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia / Liu R. [et al.] // Eur J Immunol. – 2010. – Vol.40, №6. – Р. 1577-89.; Thiruppathi M. Impaired regulatory function in circulating CD4(+)CD25(high)CD127(low/-) T cells in patients with myasthenia gravis / Thiruppathi M. [et al.] // Clin Immunol. – 2012. Vol.145, №3. – Р. 209-2.; Gunes H. What chances do children have against COVID-19? Is the answer hidden within the thymus? / Gunes H. [et al.] // European journal of pediatrics. – 2021. – Vol.180, №3. – Р. 983-986.; Wang W. High-dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID-19 patients / Wang W., Su B., Pang L, Qiao L. // Cell Mol Immunol. – 2020. – Vol.17, №6. – Р. 650-652.; Quin C. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China / Quin C., Zhou L., Hu Z. // Clin Infect Dis. – 2020. – Vol.71, №15. – Р. 762-768.; Muir R. Innate lymphoid cells are the predominant source of IL-17A during the early pathogenesis of acute respiratory distress syndrome / Muir R., Osbourn M., Dubois A.V. // Am J Respir Crit Care Med. – 2016. – Vol.193, №4. – Р. 407-16.; Sriwastava S. New onset of ocular myasthenia gravis in a patient with COVID-19: a novel case report and literature review / Sriwastava S., Tandon M., Kataria S. // J Neurol. – 2021. – Vol.268, №8. – Р. 2690-2696.; Brossard-Barbosa N. Seropositive ocular myasthenia gravis developing shortly after COVID-19 infection: report and review of the literature / Brossard-Barbosa N. [et al.] // J Neuroophthalmol. – 2022.; Алексеева, Т.М. Дебют генерализованной миастении после перенесенной новой коронавирусной инфекции (COVID-19) / Т.М. Алексеева [и др.] // Журнал инфектологии. – 2021. – Т.13, № 4. – С. 127–132.; Jakubíkova M. Predictive factors for a severe course of COVID-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival / Jakubíkova M., Tyblova M., Tesar A., Horakova M. // Eur J Neurol. – 2021. – Vol.28, №10. – Р. 3418-3425.; Kim Y. Outcomes in myasthenia gravis patients: analysis from electronic health records in the United States / Kim Y. [et al.] // Front Neurol. – 2022.; Muppidi S. COVID-19-associated risks and effects in myasthenia gravis (CARE-MG) / Muppidi S. [et al.] // Lancet Neurol. – 2020. – Vol.19, №12. – Р. 970-971.; Emamikhah M. Opsoclonus-myoclonussyndrome, a post-infectious neurologic complication of COVID-19: case series and review of literature / Emamikhah M. [et al.] // Journal of neurovirology. – 2021. – Vol.1, №9.; Urrea-Mendoza E. Opsoclonus-Myoclonus-Ataxia Syndrome (OMAS) associated with SARS-CoV-2 infection: post-infectious neurological complication with benign prognosis / UrreaMendoza E., Okafor K. // J Neurovirol. – 2021. – Vol.11, №7.; Fernandes J. Opsoclonus myoclonus ataxia syndrome in severe acute respiratory syndrome coronavirus-2 / Fernandes J., Puhlmann P. // Journal of Neurovirology. – 2021. – Vol.1, №3.; Roman G. Acute transverse myelitis (ATM. clinical review of 43 patients with COVID-19-associated ATM and 3 post-vaccination ATM serious adverse events with the ChAdOx1 nCoV-19 vaccine (AZD1222) / Roman G., Gracia F. // Frontiers in immunology. – 2021. – Vol.12, №879.; https://journal.niidi.ru/jofin/article/view/1354

  9. 9
  10. 10

    Source: Bukovinian Medical Herald; Vol. 16 No. 4 (64) (2012); 218-222 ; Буковинский медицинский вестник; Том 16 № 4 (64) (2012); 218-222 ; Буковинський медичний вісник; Том 16 № 4 (64) (2012); 218-222 ; 2413-0737 ; 1684-7903

    File Description: application/pdf

  11. 11
  12. 12
  13. 13

    Source: Bulletin of Scientific Research; No. 1 (2018) ; Вестник научных исследований; № 1 (2018) ; Вісник наукових досліджень; № 1 (2018) ; 2415-8798 ; 1681-276X ; 10.11603/2415-8798.2018.1

    File Description: application/pdf

  14. 14
  15. 15
  16. 16

    Source: Bulletin of Scientific Research; No 3 (2017) ; Вестник научных исследований; № 3 (2017) ; Вісник наукових досліджень; № 3 (2017) ; 2415-8798 ; 1681-276X ; 10.11603/2415-8798.2017.3

    File Description: application/pdf

  17. 17
  18. 18

    Source: Meditsinskiy sovet = Medical Council; № 2 (2018); 156-161 ; Медицинский Совет; № 2 (2018); 156-161 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2018-2

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/2306/2289; Brown CW. Sprue and Its Treatment. London: J Bale, Sons, and Danielson, 1908.; Elders C. Tropical sprue and pernicious anaemia, aetiology and treatment. Lancet, 1925, i: 75–77.; Cooke WT, Thomas-Smith W. Neurological disorders associated with adult coeliac disease. Brain, 1966, 89: 683–722.; Hadjivassiliou M, Gibson A, Davies-Jones GAB, Lobo A, Stephenson TJ, Milford-Ward A. Is cryptic gluten sensitivity an important cause of neurological illness? Lancet, 1996, 347: 369–71.; Luostarinen L, Pirttilä T, Collin P. Coeliac disease presenting with neurological disorders. Eur Neurol, 1999, 42: 132–135.; Holmes GKT. Neurological and psychiatric complications in coeliac disease. In: Gobbi G, Anderman F, Naccarato S, et al, eds. Epilepsy and Other Neurological Disorders in Celiac Disease. London: John Libbey, 1997: 251–264.; Briani C, Zara G, Alaedini A, et al. Neurological complications of coeliac disease and autoimmune mechanisms: a prospective study. J Neuroimmunol, 2008, 195: 171–75.; Chin RL, Latov N, Green P et al. Neurologic Complica tions of Celiac Disease. J Clin Neuromusc Dis, 2004, 5: 129–137.; Hu WT, Murray JA, Greenaway MC, Parisi JE, Josephs KA. Cognitive impairment and celiac disease. Arch Neurol, 2006, 63: 1440–6.; Currie S, Hadjivassiliou M, Clark M, et al. Should we be ‘nervous’ about coeliac disease? Brain abnormalities in patients with coeliac disease referred for neurological opinion. J Neurol Neurosurg Psychiatry, 2012, 83: 1216–21.; Zelnik N, Pacht A, Obeid R, Lerner A. Range of neurological disorders in patients with celiac disease. Pediatrics, 2004, 113: 1672–6.; Всероссийский консенсус по диагностике и лечению целиакии у детей и взрослых. Принят на 42-й Научной сессии ЦНИИГ (2–3 марта 2016 г.). Consilium Medicum. Педиатрия. (Прил.), 2016, 01: 6-19.; Abele M, Bu¨rk K, Schöls L, et al. The aetiology of sporadic adult-onset ataxia. Brain, 2002, 125: 961–968.; Kaplan JG, Pack D, Horoupian D, et al. Distal axonopathy associated with chronic gluten enteropathy: a treatable disorder. Neurology, 1988, 38: 642–645.; Muller AF, Donnelly MT, Smith CM, et al. Neurological complications of celiac disease: a rare but continuing problem. Am J Gastroenterol, 1996, 91: 1430–1435.; Lionetti E, Francavilla R, Pavone P et al. The neurology of coeliac disease in childhood: what is the evidence? A systematic review and metaanalysis. Dev Med Child Neurol, 2010, 52(8): 700-7.; Luostarinen L, Himanen SL, Luostarinen M, et al. Neuromuscular and sensory disturbances in patients with well-treated celiac disease. J Neurol Neurosurg Psychiatry, 2003, 74: 490–494.; Chin RL, Sander HW, Brannagan TH, et al. Celiac neuropathy. Neurology, 2003, 60: 1581–1585.; Parisi P, Pietropaoli N, Ferretti A et al. Role of the gluten-free diet on neurological-EEG findings and sleep disordered breathing in children with celiac disease. Seizure, 2015 Feb, 25: 181-3.; Işikay S, Hizli Ş, Çoşkun S, Yilmaz K Increased tissue transglutaminase levels are associated with increased epileptiform activity in electroencephalography among patients with celiac disease. Arq Gastroenterol, 2015 Dec, 52(4): 272-7.; Lichtwark IT, Newnham ED, Robinson SR, et al. Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Aliment Pharmacol Ther, 2014, 40: 160–70.; Volta U, Caio G, De Giorgio R et al. Non-celiac gluten sensitivity: a work-in-progress entity in the spectrum of wheat-related disorders. Best Pract Res Clin Gastroenterol, 2015 Jun, 29(3): 477-91.; Volta U, Bardella MT, Calabr A et al. Study Group for Non-Celiac Gluten Sensitivity. An Italian prospective multicenter survey on patients suspected of having non-celiac gluten sensitivity. BMC Med, 2014, 12: 85.; Francavilla R, Cristofori F, Castellaneta S et al. Clinical, serologic, and histologic features of gluten sensitivity in children. J Pediatr, 2014, 164: 463e7.; McElhanon BO, McCracken C, Karpen S, Sharp WG (2014) Gastrointestinal symptoms in autism spectrum disorder: a metaanalysis. Pediatrics, 133: 872–883.; Piwowarczyk A, Horvath A, Łukasik J et al. Glutenand casein-free diet and autism spectrum disorders in children: a systematic review. Eur J Nutr, 2017 Jun 13. doi:10.1007/s00394-017-1483-2.; Lyra L, Rizzo LE, Sunahara CS et al. What do Cochrane systematic reviews say about interventions for autism spectrum disorders? Sao Paulo Med J, 2017 Mar-Apr, 135(2): 192-201.; Sathe N, Andrews JC, McPheeters ML et al. Nutritional and Dietary Interventions for Autism Spectrum Disorder: A Systematic Review. Pediatrics, 2017 Jun, 139(6). pii: e20170346.; Bender L. Childhood schizophrenia. Psychiatr. Q, 1953, 27: 663–681.; Dohan FC. Cereals and schizophrenia. Data and hypothesis. Acta Psychiatr. Scand., 1966, 42: 125–152.; Dohan FC, Grasberger J, Lowell F, Johnston H, Arbegast AW: Relapsed schizophrenics: more rapid improvement on a milk-and cereal-free diet. Br J Psychiatry, 1969, 115(522): 595–596.; Singh MM, Kay SR. Wheat gluten asa pathogenic factor in schizophrenia. Science, 1976: 191(4225): 401–402.; Dohan FC, Harper EH, Clark MH et al. Is schizophrenia rare if grain is rare? Biol. Psychiatry, 1984, 19: 385–399.; Vlissides DN, Venulet A, Jenner F. A double-blind gluten-free/gluten-load controlled trial in a secure ward population. Br J Psychiatry, 1986,148(4): 447–452.; Potkin SG, Weinberger D, Kleinman J et al. Wheat gluten challenge in schizophrenic patients. Am J Psychiatry, 1981, 138(1208): 11.; Osborne M, Crayton JW, Javaid J, Davis JM Lack of effect of a gluten-free diet on neuroleptic blood levels in schizophrenic patients. Biol Psychiatry, 1982, 17(5): 627–629.; Arroll MA, Wilder L, Neil J. Nutritional interventions for the adjunctive treatment of schizophrenia: a brief review. Nutrition Journal, 2014, 13: 91.; Murray-Kolb LE, Beard JL. Iron treatment normalizes cognitive functioning in young women. Am J Clin Nutr, 2007, 85: 778–87.; Balion C, Griffith L, Strifler L, et al. Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology, 2012, 79: 1397–405.; Ramos M, Allen L, Mungas D, et al. Lowfolate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. Am J Clin Nutr, 2005, 82: 1346–52.; Kieslich M, Errázuriz G, Posselt HG, Moeller-Hartmann W, Zanella F, Boehles H. Brain white-matter lesions in celiac disease: a prospective study of 75 diet-treated patients. Pediatrics, 2001, 108(2): E21.; Husby S, Koletzko S, Korponay-Szabó IR et al. European Society for Pediatric Gastroente rology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr, 2012 Jan, 54(1): 136-60.; Udit S, Gautron L. Molecular anatomy of the gutbrain axis revealed with transgenic technologies: implications in metabolic research. Front. Neurosci., 2013, 7: 134.; Karakuła-Juchnowicz H, Dzikowski M, Pelczar ska A et al. The brain-gut axis dysfunctions and hypersensitivity to food antigens in the etiopathogenesis of schizophrenia. Psychiatr Pol, 2016, 50(4): 747-760.; de Magistris L, Familiari V, Pascotto A et al (2010) Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr, 51: 418–424.; D’Eufemia P, Celli M, Finocchiaro R et al. Abnormal intestinal permeability in children with autism. Acta Paediatr, 1996, 85: 1076–1079.; Lu R, Wang W, Uzzau S et al. Affinity purification and partial characterization of the zonulin/zonula occludens toxin (zot) receptor from human brain. J. Neurochem., 2000, 74: 320–326.; Shattock P, Kennedy A, Rowell F, Berney T. Role of neuropeptides in autism and their relationships with classical neurotransmitters. Brain Dysfunct, 1990, 3: 328–345.; Ly V, Bottelier M, Hoekstra PJ et al. Elimination diets’ efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry, 2017 Feb 11. doi:10.1007/s00787-017-0959-1.; Choi S, DiSilvio B, Fernstrom MH, Fernstrom JD. Meal ingestion, aminoacids and brain neurotransmitters: effects of dietary protein source on serotonin and catecholamine synthesis rats. Physiol Behav, 2009, 98: 156–62.; Schuppan D, Pickert G, Ashfaq-Khan M et al. Non-celiac wheat sensitivity: differential diagnosis, triggers and implications. Best Pract Res Clin Gastroenterol, 2015 Jun, 29(3): 469-76.; Turrin NP, Plata-Salam_an CR. Cytokine-cytokine interactions and the brain. Brain Res Bull, 2000, 51: 3–9.; Banks WA, Farr SA, Morley JE. Entry of bloodborne cytokines into the central nervous system: effects on cognitive processes. Neuroimmunomodulation, 2002, 10: 319.; Karakuła-Juchnowicz H, Dzikowski M, Pelczarska A et al. The brain-gut axis dysfunctions and hypersensitivity to food antigens in the etiopathogenesis of schizophrenia. Psychiatr Pol, 2016, 50(4): 747-760.; Wang L, Christophersen CT, Sorich MJ et al. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig. Dis. Sci., 2012, 57: 2096–2102.; Thomas RH, Meeking MM, Mepham JR et al. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development ofa rodent model of autism spectrum disorders. J. Neuroinflammation, 2012, 9: 153.; Sandler RH, Finegold SM, Bolte ER, Buchanan CP, Maxwell AP, Vaisanen ML. et al. Shortterm benefit from oral vancomycin treatment of regressiveonset autism. J. Child Neurol, 2000, 15(7): 429–435.; Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV. Evolution of cell-cell signaling in animals: Did late horizontal gene transfer from bacteria havea role? Trends Genet, 2004, 20(7): 292–299.; Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res., 2008, 43: 164–174.; Irwin MR, Miller AH. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav. Immun., 2007, 21: 374–383.; Bercik P, Denou E, Collins J. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011, 141: 599–609.; Heijtz RD, Wang S, Anuar F. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci, 2011, 108: 3047–52.; Tillisch K, Labus J, Kilpatrick L. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 2013, 144: 1394–401.

  19. 19
  20. 20