Výsledky vyhľadávania - "НАДФН-оксидаза"
-
1
Zdroj: Clinical and experimental pathology; Vol. 22 No. 3 (2023)
Клиническая и экспериментальная патология; Том 22 № 3 (2023)
Клінічна та експериментальна патологія; Том 22 № 3 (2023)Predmety: malondialdehyde, супероксиддисмутаза, NADPH oxidase, НАДФН-оксидаза, ischemic stroke, ішемічний інсульт, нейропротектор, neuroprotector, малоновий діальдегід, superoxide dismutase
Popis súboru: application/pdf
Prístupová URL adresa: http://cep.bsmu.edu.ua/article/view/293261
-
2
Autori:
Zdroj: Clinical and experimental pathology; Vol. 22 No. 3 (2023) ; Клиническая и экспериментальная патология; Том 22 № 3 (2023) ; Клінічна та експериментальна патологія; Том 22 № 3 (2023) ; 2521-1153 ; 1727-4338
Predmety: ischemic stroke, neuroprotector, malondialdehyde, superoxide dismutase, NADPH oxidase, ішемічний інсульт, нейропротектор, малоновий діальдегід, супероксиддисмутаза, НАДФН-оксидаза
Popis súboru: application/pdf
Relation: http://cep.bsmu.edu.ua/article/view/293261/286152; http://cep.bsmu.edu.ua/article/view/293261
Dostupnosť: http://cep.bsmu.edu.ua/article/view/293261
-
3
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 4 (2023); 243–249 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 4 (2023); 243–249 ; 0137-0952
Predmety: НАДФН-оксидаза, oxidative burst, neutrophil extracellular traps, mitogen-activated protein kinases, protein kinase B, NADPH oxidase, окислительный взрыв, нейтрофильные внеклеточные ловушки, митоген-активируемые протеинкиназы, протеинкиназа В
Popis súboru: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1242/654; https://vestnik-bio-msu.elpub.ru/jour/article/downloadSuppFile/1242/850; https://vestnik-bio-msu.elpub.ru/jour/article/downloadSuppFile/1242/851; https://vestnik-bio-msu.elpub.ru/jour/article/downloadSuppFile/1242/852; https://vestnik-bio-msu.elpub.ru/jour/article/downloadSuppFile/1242/853; Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535.; Steinberg B.E., Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci. STKE. 2007;2007(379):e11.; Pinegin B., Vorobjeva N., Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun. Rev. 2015;14(7):633–640.; Vorobjeva N.V., Pinegin B.V. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc.). 2014;79(12):1286–1296.; Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.; Vorobjeva N.V. Neutrophil extracellular traps: new aspects. Moscow Univ. Biol. Sci. Bull. 2020;75(4):173–188.; Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018;18(2):134–147.; Свистушкин В.М., Никифорова Г.Н., Воробьева Н.В., Деханов А.С., Дагиль Ю.А., Бредова О.Ю., Еремеева К.В. Нейтрофильные внеклеточные ловушки в патогенезе хронического риносинусита. Вестн. оторинол. 2021;86(6):105–112.; Chen K., Nishi H., Travers R., Tsuboi N., Martinod K., Wagner D.D., Stan R., Croce K., Mayadas T.N. Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo. Blood. 2012;120(22):4421–4431.; Behnen M., Leschczyk C., Möller S., Batel T., Klinger M., Solbach W., Laskay T. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. J. Immunol. 2014;193(4):1954–1965.; Keshari R.S., Jyoti A., Dubey M., Kothari N., Kohli M., Bogra J., Barthwal M.K., Dikshit M. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One. 2012;7(10):e48111.; Vorobjeva N., Prikhodko A., Galkin I., Pletjushkina O., Zinovkin R., Sud'ina G., Chernyak B., Pinegin B. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur. J. Cell. Biol. 2017;96(3):254–265.; Vorobjeva N., Galkin I., Pletjushkina O., Golyshev S., Zinovkin R., Prikhodko A., Pinegin V., Kondratenko I., Pinegin B., Chernyak B. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866(5):165664.; Vorobjeva N., Dagil Y., Pashenkov M., Pinegin B., Chernyak B. Protein kinase C isoforms mediate the formation of neutrophil extracellular traps. Int. Immunopharmacol. 2022;24(114): 109448.; Kenny E.F., Herzig A., Krüger R., Muth A., Mondal S., Thompson P.R., Brinkmann V., Bernuth H.V., Zychlinsky A. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife. 2017;6:e24437.; Neubert E, Bach K.M., Busse J., Bogeski I., Schön M.P., Kruss S., Erpenbeck L. Blue and Long-Wave Ultraviolet Light Induce in vitro Neutrophil Extracellular Trap (NET) Formation. Front. Immunol. 2019;10:2428.; Arzumanyan G., Mamatkulov K., Arynbek Y., Zakrytnaya D., Jevremović A., Vorobjeva N. Radiation from UV-A to red light induces ROS-dependent release of neutrophil extracellular traps. Int. J. Mol. Sci. 2023;24(6):5770.; Metzler K.D., Goosmann C., Lubojemska A., Zychlinsky A., Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell. Rep. 2014;8(3):883–896.; Vorobjeva N.V., Vakhlyarskaya S.S., Chernyak B.V. The role of protein kinase C isoforms in the formation of neutrophil extracellular traps. Moscow Univ. Biol. Sci. Bull. 2022;77(2):112–121.; Amulic B., Knackstedt S.L., Abu Abed U., Deigendesch N., Harbort C.J., Caffrey B.E., Brinkmann V., Heppner F.L., Hinds P.W., Zychlinsky A. Cell-cycle proteins control production of neutrophil extracellular traps. Dev. Cell. 2017;43(4):449–462.e5.; Hakkim A., Fuchs T.A., Martinez N.E., Hess S., Prinz H., Zychlinsky A., Waldmann H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 2011;7(2):75–77.; Vorobjeva N.V. Participation of non-receptor Src-family tyrosine kinases in the formation of neutrophil extracellular traps. Moscow Univ. Biol. Sci. Bull. 2023;78(1):8–13.; Douda D.N., Khan M.A., Grasemann H., Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc. Natl. Acad. Sci. U.S.A. 2015;112(9):2817–2822.; Keshari R.S., Verma A., Barthwal M.K., Dikshit M. Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J. Cell. Biochem. 2013;114(3):532–540.; Douda D.N., Yip L., Khan M.A., Grasemann H., Palaniyar N. Akt is essential to induce NADPH-dependent NETosis and to switch the neutrophil death to apoptosis. Blood. 2014;123(4):597–600.; Ono K., Han J. The p38 signal transduction pathway: activation and function. Cell. Signal. 2000;12(1):1–13.
-
4
Zdroj: Nauchno-prakticheskii zhurnal «Medicinskaia genetika». :37-48
Predmety: 0301 basic medicine, 2. Zero hunger, 0303 health sciences, NADPH oxidase, type 2 diabetes mellitus, сахарный диабет 2 типа, 3. Good health, 03 medical and health sciences, однонуклеотидный полиморфизм, НАДФН-оксидаза, single nucleotide polymorphism, цитохром b-245, наследственная предрасположенность, cytochrome b-245, oxidative stress, genetic predisposition, оксидантный стресс
Prístupová URL adresa: https://www.medgen-journal.ru/jour/article/download/716/441
-
5
Autori:
Zdroj: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 73, № 4 (2018); 242-246 ; Вестник Московского университета. Серия 16. Биология; Том 73, № 4 (2018); 242-246 ; 0137-0952
Predmety: митохондрии, inflammation, oxidative stress, NADPH-oxidase, respiratory burst, mitochondria, воспаление, окислительный стресс, НАДФН-оксидаза, респираторный взрыв
Popis súboru: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/657/447; Feniouk B.A., Skul achev V.P. Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants // Curr. Aging Sci. 2017. Vol. 10. N 1. P. 41–48.; Holmstrom K.M., Fin kel T. Cellular mechanisms and physiological consequences of redox-dependent signaling // Nat. Rev. Mol. Cell Bio. 2014. Vol. 15. N 6. P. 411–421.; Kalinina E.V., Chernov N.N., Novichkova M.D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes // Biochemistry (Mosc). 2014. Vol. 79. N 13. P. 1562–1583.; Medzhitov R. Origin and physiological roles of inflammation // Nature. 2008. Vol. 454. N 7203. Р. 428–435.; Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive oxygen species in inflammation and tissue injury // Antioxid. Redox Sign. 2008. Vol. 20. N 7. Р. 1126–1167.; Laurila J.P., Laatikainen L.E., Castellone M.D., Laukkanen M.O. SOD3 reduces inflammatory cell migration by regulating adhesion molecule and cytokine expression // PLoS One. 2009. Vol. 4. N 6:e5786.; Niethammer P., Grabher C., Look A.T., Mitchison T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish // Nature. 2009. Vol. 459. N 7249. Р. 996–999.; Hurd T.R., DeGennaro M., Lehmann R. Redox regulation of cell migration and adhesion // Trends Cell Biol. 2012. Vol. 22. N2. Р. 107–115.; Hattori H., Subramanian K.K., Sakai J., et al. Smallmolecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107. N 8. P. 3546–3551.; Blasig I.E., Bellmann C., Cording J., Del Vecchio G., Zwanziger D., Huber O., Haseloff R.F. Occludin protein family: oxidative stress and reducing conditions // Antioxid. Redox Sign. 2011. Vol. 15. N 5. Р. 1195–1219.; Monaghan-Benson E., Burridge K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species // Biol. Chem. 2009. Vol. 284. N 38. Р. 25602–25611.; Segal A.W. The function of the NADPH oxidase of phagocytes and its relationship to other NOXs in plants, invertebrates, and mammals // Int. J. Biochem. Cell B. 2008. Vol. 40. N 4–3. Р. 604–618.; Warnatsch A., Tsourouktsoglou T.D., Branzk N., Wang Q., Reincke S., Herbst S., Gutierrez M., Papayannopoulos V. Reactive oxygen species localization programs inflammation to clear microbes of different size // Immunity. 2017. Vol. 46. N 3. Р. 421–432.; Khan M.A., Palaniyar N. Trans criptional firing helps to drive NETosis // Sci. Rep. 2017. Vol. 7:41749.; Ikeda S., Yamaoka-Tojo M., Hilenski L., Patrushev N.A., Anwar G.M., Quinn M.T., Ushio-Fukai M. IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2 // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. N. 11. Р. 2295–2300.; Wang Y., Zang Q.S., Liu Z., Wu Q., Maass D., Dulan G., Shaul P.W., Melito L., Frantz D.E., Kilgore J.A., Williams N.S., Terada L.S., Nwariaku F.E. Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species // Am. J. Physiol. Cell Physiol. 2011. Vol. 301. N 3. Р. C695–C704.; Lopes F., Coelho F.M., Costa V.V ., Vieira É.L., Sousa L.P., Silva T.A., Vieira L.Q., Teixeira M.M., Pinho V. Resolution of neutrophilic inflammation by H2O2 in antigen-induced arthritis //Arthritis Rheum. 2011. Vol. 63. N 9. Р. 2651–2660.; Kuchler L., Giegerich A.K., Sha L .K., Knape T., Wong M.S., Schröder K., Brandes R.P., Heide H., Wittig I., Brüne B., von Knethen A. SYNCRIP-dependent Nox2 mRNA destabilization impairs ROS formation in M2-polarized macrophages // Antioxid. Redox Sign. 2014. Vol. 21. N 18. Р. 2483–2497.; Zhang Y., Choksi S., Chen K., Pobezinskaya Y., Linnoila I., Liu Z.G. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages // Cell Res. 2013. Vol. 23. N 7. Р. 898–914.; Tan H.Y., Wang N., Li S., Hong M., Wang X., Feng Y. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases // Oxid. Med. Cell. Longev. 2016. Vol. 2016: 2795090.; Morgan M.J., Liu Z.G. Crosstalk of reactive oxygen species and NF-κB signaling // Cell Res. 2011. Vol. 21. N 1. P. 103–115.; Wagener F.A., Carels C.E., Lundvig D.M. Targeting the redox balance in inflammatory skin conditions// Int. J. Mol. Sci. 2013. Vol. 14. N 5. P. 9126–9167.; Dalle-Donne I., Rossi R., Colombo R., Giustarini D., Milzani A. Biomarkers of oxidative damage in human disease // Clin. Chem. 2006. Vol. 52. N 4. P. 601–623.; Liu Z., Ren Z., Zhang J., Chuang C.C., Kandaswamy E., Zhou T., Zuo L. Role of ROS and nutritional antioxidants in human diseases // Front. Physiol. 2018. Vol. 9:477.; Oyewole A.O., Birch-Machin M.A. Mitochondriatargeted antioxidants // FASEB J. 2015. Vol. 29. N 12. P. 4766–4771.
-
6
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Doklady of the National Academy of Sciences of Belarus; Том 62, № 1 (2018); 93-100 ; Доклады Национальной академии наук Беларуси; Том 62, № 1 (2018); 93-100 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2018-62-1
Predmety: НАДФН-оксидаза, chemoresistance, tumor cells, antioxidants, redox signaling, NADPH oxidase, химиорезистентность, опухолевые клетки, антиоксиданты, редокссигнализация
Popis súboru: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/494/496; Du, J. Ascorbic acid: Chemistry, biology and the treatment of cancer / J. Du, J. J. Cullen, G. R. Buettner // Biochim. Biophys. Acta. – 2012. – Vol. 1826, N 2. – P. 443–457. doi.org/10.1016/j.bbcan.2012.06.003; Cameron, E. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer / E. Cameron, L. Pauling // Proc. Natl. Acad. Sci. USA. – 1976. – Vol. 73, N 10. – P. 3685–3689. doi.org/10.1073/ pnas.73.10.3685; High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy A randomized double-blind comparison / C. G. Moertel [et al.] // N. Engl. J. Med. – 1985. – Vol. 312, N 3. – P. 137–141. doi.org/10.1056/nejm198501173120301; Vitamin C pharmacokinetics: implications for oral and intravenous use / S. J. Padayatty [et al.] // Ann. Intern. Med. – 2004. – Vol. 140, N 7. – P. 533–537. doi.org/10.7326/0003-4819-140-7-200404060-00010; Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice / Q. Chen [et al.] // Proc. Natl. Acad. Sci. USA. – 2008. – Vol. 105, N 32. – P. 11105–11109. doi.org/10.1073/pnas.0804226105; Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer / H. B. Pollard [et al.] // In Vivo. – 2010. – Vol. 24. – P. 249–255.; Suh, J. Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide / J. Suh, B. Zhu, B. Frei // Free Radic. Biol. Med. – 2003. – Vol. 34, N 10. – P. 1306–1314. doi.org/10.1016/s0891-5849(03)00147-3; Редокс-регуляция клеточной активности: концепции и механизмы / С. Н. Черенкевич [и др.] // Весці НАН Беларусі. Сер. біял. навук. – 2013. – № 1. – C. 92–108.; Martinovich, G. G. Effects of ascorbic acid on calcium signaling in tumor cells / G. G. Martinovich, I. V. Martinovich, S. N. Cherenkevich // Bull. Exp. Biol. Med. – 2009. – Vol. 147, N 4. – P. 469–472. doi.org/10.1007/s10517-009-0555-6; Redox regulation of calcium signaling in cancer cells by ascorbic acid involving the mitochondrial electron transport chain / G. G. Martinovich [et al.] // Journal of Biophysics. – 2012. – Vol. 2012. – Art. 921653. doi.org/10.1155/2012/921653; Martinovich, G. G. Redox regulation of cellular processes: a biophysical model and experiment / G. G. Martinovich, I. V. Martinovich, S. N. Cherenkevich // Biophysics. – 2011. – Vol. 56, N 3. – P. 444–451. doi.org/10.1134/s0006350911030171; Phenolic antioxidant TS-13 regulating ARE-driven genes induces tumor cell death by a mitochondria-dependent pathway / G. G. Martinovich [et al.] // Biophysics. – 2015. – Vol. 60, N 1. – P. 94–100. doi.org/10.1134/s0006350915010194; Thymoquinone, a biologically active component of Nigella sativa, induces mitochondrial production of reactive oxygen species and programmed death of tumor cells / G. G. Martinovich [et al.] // Biophysics. – 2016. – Vol. 61, N 6. – P. 963–970. doi.org/10.1134/s0006350916060154; Mazes of Nrf2 Regulation / N. K. Zenkov [et al.] // Biochemistry (Mosc). – 2017. – Vol. 82, N 5. – Р. 556–564. doi. org/10.1134/s0006297917050030; Dinkova-Kostova, A. T. Chemical structures of inducers of nicotinamide quinine oxidoreductase 1 (NQO1) / A. T. Dinkova-Kostova, J. W. Fahey, P. Talalay // Meth. Enzymol. – 2004. – Vol. 382. – P. 423–448. doi.org/10.1016/s0076-6879(04)82023-8; Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals / S. R. Kim [et al.] // Biochemical Pharmacology. – 2015. – Vol. 95, N 4. – P. 279–289. doi.org/10.1016/j.bcp.2015.04.007; NADPH oxidase activity is required for endothelial cell proliferation and migration / M. Abid [et al.] // FEBS Letters. – 2000. – Vol. 486, N 3. – P. 252–256. doi.org/10.1016/s0014-5793(00)02305-x; https://doklady.belnauka.by/jour/article/view/494
-
7
Autori:
Zdroj: Кубанский научный медицинский вестник, Iss 1, Pp 111-114 (2015)
Predmety: пародонтит, нейтрофильные лейкоциты, надфн-оксидаза, железодефицитная анемия, periodontitis, iron-deficiency anemia, neutrophilic leukocytes, nadph-oxidase, Medicine
Popis súboru: electronic resource
Relation: https://ksma.elpub.ru/jour/article/view/281; https://doaj.org/toc/1608-6228; https://doaj.org/toc/2541-9544
Prístupová URL adresa: https://doaj.org/article/354314232f9944e6961c1864f6eec7a9
-
8
-
9
-
10
Autori: a ďalší
Predmety: хемилюминесценция, НАДФН-оксидаза, полиморфноядерные лейкоциты, непереносимость нестероидных противовоспалительных препаратов, непереносимость тартразина
Popis súboru: text/html
-
11
Autori:
Predmety: ГИНГИВИТ, ЖЕЛЕЗОДЕФИЦИТНАЯ АНЕМИЯ, НЕЙТРОФИЛЬНЫЕ ЛЕЙКОЦИТЫ, МИЕЛОПЕРОКСИДАЗА, НАДФН-ОКСИДАЗА
Popis súboru: text/html
-
12
Zdroj: Фундаментальные исследования.
Predmety: НЕЙТРОФИЛЫ, НАДФН-ОКСИДАЗА, АДРЕНАЛИН, ИНСУЛИН, ГИСТАМИН, ПРОГЕСТЕРОН, ЭСТРОГЕН, ИММУНОГЛОБУЛИН G, ОХЛАЖДЕНИЕ ДО –2 °С, ЭКСПОЗИЦИЯ ПРИ + 45 °С, ЭКСПОЗИЦИЯ ПРИ + 2 °С, ОКИСЛИТЕЛЬНАЯ АКТИВНОСТЬ, COOLING TO –2 °C, EXPOSURE AT + 45 °C, EXPOSURE AT + 2 °C, 3. Good health
Popis súboru: text/html
-
13
Zdroj: Курский научно-практический вестник "Человек и его здоровье".
Predmety: хемилюминесценция, НАДФН-оксидаза, полиморфноядерные лейкоциты, непереносимость нестероидных противовоспалительных препаратов, непереносимость тартразина, 3. Good health
Popis súboru: text/html
-
14
Zdroj: Кубанский научный медицинский вестник.
Predmety: ПАРОДОНТИТ, НЕЙТРОФИЛЬНЫЕ ЛЕЙКОЦИТЫ, НАДФН-ОКСИДАЗА, ЖЕЛЕЗОДЕФИЦИТНАЯ АНЕМИЯ, 3. Good health
Popis súboru: text/html
-
15
Zdroj: Кубанский научный медицинский вестник.
Predmety: 03 medical and health sciences, 0302 clinical medicine, ГИНГИВИТ, ЖЕЛЕЗОДЕФИЦИТНАЯ АНЕМИЯ, НЕЙТРОФИЛЬНЫЕ ЛЕЙКОЦИТЫ, МИЕЛОПЕРОКСИДАЗА, НАДФН-ОКСИДАЗА, 3. Good health
Popis súboru: text/html
Nájsť tento článok vo Web of Science