Výsledky vyhľadávania - "ИСКУССТВЕННОЕ ВСКАРМЛИВАНИЕ"

  1. 1

    Zdroj: Meditsinskiy sovet = Medical Council; № 1 (2025); 116-125 ; Медицинский Совет; № 1 (2025); 116-125 ; 2658-5790 ; 2079-701X

    Popis súboru: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8973/7801; Румянцев АГ, Тимакова МВ. История и эволюция педиатрии. Вопросы практической педиатрии. 2013;8(2):59–65. Режим доступа: https://elibrary.ru/qajkgd.; Lim ML, Wallace MR. Infectious diarrhea in history. Infect Dis Clin North Am. 2004;18(2):261–274. https://doi.org/10.1016/j.idc.2004.01.006.; Ковнер С. Очерки истории медицины. Вып. третий (От Платона до Галена). Киев; 1888. 436 с. Режим доступа: https://commons.wikimedia.org/wiki/File:Ковнер_С._Г._-_Очерки_истории_медицины_%28вып_III%29_1888.pdf.; Захарова ИН, Лыкина ЕВ. Последствия неправильного вскармливания детей. Вопросы современной педиатрии. 2007;6(1):40–46. Режим доступа: https://vsp.spr-journal.ru/jour/article/view/995.; Darmon N, Drewnowski A. Does social class predict diet quality? Am J Clin Nutr. 2008;87(5):1107–1117. https://doi.org/10.1093/ajcn/87.5.1107.; Keefe DM. Agency Response Letter GRAS Notice No. GRN 000644, C.f.F.S.a.A. Nutrition, Editor; 2016. Available at: https://www.fda.gov/food/gras-notice-inventory/agency-response-letter-gras-notice-no-grn-000644.; Agostoni C, Bresson JL, Fairweather-Tait S, Flynn A, Golly I, Korhonen H et al. Scientific Opinion on the suitability of goat milk protein as a source of protein in infant formulae and in follow-on formulae. EFSA J. 2012;10(3):2603. https://doi.org/10.2903/j.efsa.2012.2603.; Maathuis A, Havenaar R, He T, Bellmann S. Protein Digestion and Quality of Goat and Cow Milk Infant Formula and Human Milk Under Simulated Infant Conditions. J Pediatr Gastroenterol Nutr. 2017;65(6):661–666. https://doi.org/10.1097/MPG.0000000000001740.; Hodgkinson AJ, Wallace OAM, Boggs I, Broadhurst M, Prosser CG. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem. 2018;245:275–281. https://doi.org/10.1016/j.foodchem.2017.10.028.; Bellaiche M, Oozeer R, Gerardi-Temporel G, Faure C, Vandenplas Y. Multiple functional gastrointestinal disorders are frequent in formula-fed infants and decrease their quality of life. Acta Paediatr. 2018;107(7):1276–1282. https://doi.org/10.1111/apa.14348.; Iacono G, Merolla R, D’Amico D, Bonci E, Cavataio F, Di Prima L et al. Gastrointestinal symptoms in infancy: a population-based prospective study. Dig Liver Dis. 2005;37(6):432–438. https://doi.org/10.1016/j.dld.2005.01.009.; Steutel NF, Zeevenhooven J, Scarpato E, Vandenplas Y, Tabbers MM, Staiano A, Benninga MA. Prevalence of Functional Gastrointestinal Disorders in European Infants and Toddlers. J Pediatr. 2020;221:107–114. https://doi.org/10.1016/j.jpeds.2020.02.076.; Vernon-Roberts A, Safe M, Day AS. Editorial: Pediatric Functional Gastrointestinal Disorders: Challenges in Diagnosis and Treatment. Gastrointest Disord. 2024;6(1):308–312. https://doi.org/10.3390/gidisord6010021.; Drossman DA. The functional gastrointestinal disorders and the Rome II process. Gut. 1999;45(Suppl. 2):II1–II5. https://doi.org/10.1136/gut.45.2008.ii1.; Колесников ДБ, Рапопорт СИ, Вознесенская ЛА. Современные взгляды на психосоматические заболевания. Клиническая медицина. 2014;92(7):12–18. Режим доступа: https://elibrary.ru/smyapf.; Drossman DA. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology. 2016;150(6):1262–1279.e2. https://doi.org/10.1053/j.gastro.2016.02.032.; Zeng XL, Zhu LJ, Yang XD. Exploration of the complex origins of primary constipation. World J Clin Cases. 2024;12(24):5476–5482. https://doi.org/10.12998/wjcc.v12.i24.5476.; Симаненков ВИ, Маев ИВ, Ткачева ОН, Алексеенко СА, Андреев ДН, Бордин ДС и др. Синдром повышенной эпителиальной проницаемости в клинической практике. Мультидисциплинарный национальный консенсус. Кардиоваскулярная терапия и профилактика. 2021;20(1):2758. https://doi.org/10.15829/1728-8800-2021-2758.; Aydemir Y, Aydemir O, Dinleyici M, Saglik AC, Cam D, Kaya TB, Canpolat FE. Screening for functional gastrointestinal disorders in preterm infants up to 12 months of corrected age: a prospective cohort study. Eur J Pediatr. 2024;183(5):2091–2099. https://doi.org/10.1007/s00431-024-05451-4.; Vernon-Roberts A, Alexander I, Day AS. Systematic Review of Pediatric Functional Gastrointestinal Disorders (Rome IV Criteria). J Clin Med. 2021;10(21):5087. https://doi.org/10.3390/jcm10215087.; Indrio F, Enninger A, Aldekhail W, Al-Ghanem G, Al-Hussaini A, Al-Hussaini B et al. Management of the Most Common Functional Gastrointestinal Disorders in Infancy: The Middle East Expert Consensus. Pediatr Gastroenterol Hepatol Nutr. 2021;24(4):325–336. https://doi.org/10.5223/pghn.2021.24.4.325.; Benninga MA, Faure C, Hyman PE, St James Roberts I, Schechter NL, Nurko S. Childhood Functional Gastrointestinal Disorders: Neonate/Toddler. Gastroenterology. 2016;150(6):1443–1455.e2. https://doi.org/10.1053/j.gastro.2016.02.016.; Deeb MT, Mohsen YM, Nehal ES. Diagnostic Outcome of Rome IV Criteria in Infant Regurgitation. QJM. 2024;117(Suppl. 1):hcae070.494. https://doi.org/10.1093/qjmed/hcae070.494.; Захарова ИН, Сугян НГ, Бережная ИВ. Функциональные гастроинтестинальные расстройства у детей раннего возраста: критерии диагностики и подходы к диетотерапии. Российский вестник перинатологии и педиатрии. 2018;63(1):113–121. https://doi.org/10.21508/1027-4065-2018-63-1-113-121.; Indrio F, Dargenio VN, Francavilla R, Szajewska H, Vandenplas Y. Infantile Colic and Long-Term Outcomes in Childhood: A Narrative Synthesis of the Evidence. Nutrients. 2023;15(3):615. https://doi.org/10.3390/nu15030615.; Muhardi L, Aw MM, Hasosah M, Ng RT, Chong SY, Hegar B et al. A Narrative Review on the Update in the Prevalence of Infantile Colic, Regurgitation, and Constipation in Young Children: Implications of the ROME IV Criteria. Front Pediatr. 2022;9:778747. https://doi.org/10.3389/fped.2021.778747.; Despriee ÅW, Mägi CO, Småstuen MC, Glavin K, Nordhagen L, Jonassen CM et al. Prevalence and perinatal risk factors of parent-reported colic, abdominal pain and other pain or discomforts in infants until 3 months of age – A prospective cohort study in PreventADALL. J Clin Nurs. 2022;31(19-20):2784–2796. https://doi.org/10.1111/jocn.16097.; Haiden N, Savino F, Hill S, Kivelä L, De Koning B, Kӧglmeier J et al. Infant formulas for the treatment of functional gastrointestinal disorders: A position paper of the ESPGHAN Nutrition Committee. J Pediatr Gastroenterol Nutr. 2024;79(1):168–180. https://doi.org/10.1002/jpn3.12240.; Walter AW, Hovenkamp A, Devanarayana NM, Solanga R, Rajindrajith S, Benninga MA. Functional constipation in infancy and early childhood: epidemiology, risk factors, and healthcare consultation. BMC Pediatr. 2019;19(1):285. https://doi.org/10.1186/s12887-019-1652-y.; Tran DL, Sintusek P. Functional constipation in children: What physicians should know. World J Gastroenterol. 2023;29(8):1261–1288. https://doi.org/10.3748/wjg.v29.i8.1261.; Diaz S, Bittar K, Hashmi MF, Mendez MD. Constipation. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://pubmed.ncbi.nlm.nih.gov/30020663/.; Захарова ИН, Бережная ИВ, Касьянова АН, Сугян НГ, Лазарева СИ, Дедикова ОВ и др. Функциональные нарушения желудочно-кишечного тракта у детей раннего возраста – современный взгляд на традиционные проблемы у младенцев. Педиатрия. Consilium Medicum. 2018;(3):24–29. Режим доступа: https://www.kabrita.ru/assets/assets_vracham/pdf/nauchnye-publikatsii/Consilium%20Medicum,%202018%20%20%E2%84%963.pdf.; Zeevenhooven J, Koppen IJ, Benninga MA. The New Rome IV Criteria for Functional Gastrointestinal Disorders in Infants and Toddlers. Pediatr Gastroenterol Hepatol Nutr. 2017;20(1):1–13. https://doi.org/10.5223/pghn.2017.20.1.1.; Switkowski KM, Oken E, Simonin EM, Nadeau KC, Rifas-Shiman SL, Lightdale JR. Early-life risk factors for both infant colic and excessive crying without colic. Pediatr Res. 2024. https://doi.org/10.1038/s41390024-03518-4.; Vandenplas Y, Bajerova K, Dupont C, Eigenmann P, Kuitunen M, Meyer R et al. The Cow’s Milk Related Symptom Score: The 2022 Update. Nutrients. 2022;14(13):2682. https://doi.org/10.3390/nu14132682.; Vandenplas Y. Algorithms for Common Gastrointestinal Disorders. J Pediatr Gastroenterol Nutr. 2016;63(Suppl. 1):S38–S40. https://doi.org/10.1097/MPG.0000000000001220.; Verruck S, Dantas A, Prudencio ES. Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. J Funct Foods. 2019;52:243–257. https://doi.org/10.1016/j.jff.2018.11.017.; Gan J, Bornhorst GM, Henrick BM, German JB. Protein Digestion of Baby Foods: Study Approaches and Implications for Infant Health. Mol Nutr Food Res. 2018;62(1):1700231. https://doi.org/10.1002/mnfr.201700231.; Muñoz-Salinas F, Andrade-Montemayor HM, De la Torre-Carbot K, Duarte-Vázquez MÁ, Silva-Jarquin JC. Comparative Analysis of the Protein Composition of Goat Milk from French Alpine, Nubian, and Creole Breeds and Holstein Friesian Cow Milk: Implications for Early Infant Nutrition. Animals. 2022;12(17):2236. https://doi.org/10.3390/ani12172236.; Hodgkinson AJ, Wallace OAM, Smolenski G, Prosser CG. Gastric digestion of cow and goat milk: Peptides derived from simulated conditions of infant digestion. Food Chem. 2019;276:619–625. https://doi.org/10.1016/j.foodchem.2018.10.065.; Lara-Villoslada F, Olivares M, Jiménez J, Boza J, Xaus J. Goat milk is less immunogenic than cow milk in a murine model of atopy. J Pediatr Gastroenterol Nutr. 2004;39(4):354–360. https://doi.org/10.1097/00005176200410000-00010.; Infante D, Prosser C, Tormo R. Constipated Patients Fed Goat Milk Protein Formula: A Case Series Study. J Nutr Health Sci. 2018;5(2):203. https://doi.org/10.15744/2393-9060.5.203.; Maximino P, van Lee L, Meijer-Krommenhoek YN, van der Zee L, da Costa Ribeiro Junior H. Common gastrointestinal symptoms in healthy infants receiving goat milk-based formula or cow’s milk-based formula: a double-blind, randomized, controlled trial. BMC Pediatr. 2024;24(1):753. https://doi.org/10.1186/s12887-024-05214-y.; Grant C, Rotherham B, Sharpe S, Scragg R, Thompson J, Andrews J et al. Randomized, double-blind comparison of growth in infants receiving goat milk formula versus cow milk infant formula. J Paediatr Child Health. 2005;41(11):564–568. https://doi.org/10.1111/j.1440-1754.2005.00722.x.; Salsberg A. Goat Milk Toddler Formula Reduces Symptoms Associated With Cow Milk Consumption. J Acad Nutr Dietetics. 2016;116(9):A100. https://doi.org/10.1016/J.JAND.2016.06.363.; Kompan D, Komprej A. The Effect of Fatty Acids in Goat Milk on Health. In: Chaiyabutr N (ed.). Milk Production – An Up-to-Date Overview of Animal Nutrition, Management and Health. InTech; 2012. https://doi.org/10.5772/50769.; Chen Q, Yin Q, Xie Q, Liu S, Guo Z, Li B. Elucidating gut microbiota and metabolite patterns shaped by goat milk-based infant formula feeding in mice colonized by healthy infant feces. Food Chem. 2023;410:135413. https://doi.org/10.1016/j.foodchem.2023.135413.; Leong A, Liu Z, Almshawit H, Zisu B, Pillidge C, Rochfort S, Gill H. Oligosaccharides in goats’ milk-based infant formula and their prebiotic and anti-infection properties. Br J Nutr. 2019;122(4):441–449. https://doi.org/10.1017/S000711451900134X.; Chen K, Zhang G, Xie H, You L, Li H, Zhang Y et al. Efficacy of Bifidobacterium animalis subsp. lactis, BB-12® on infant colic –a randomised, doubleblinded, placebo-controlled study. Benef Microbes. 2021;12(6):531–540. https://doi.org/10.3920/BM2020.0233.; van Lee L, Meijer-Krommenhoek Y, He T, van der Zee L, Verkade H. Sleep duration among breastfed, goat milk-based or cow’s milk-based infant formula-fed infants: Post hoc analyses from a double-blind RCT. J Pediatr Gastroenterol Nutr. 2025;80(3):482–489. https://doi.org/10.1002/jpn3.12436.

  2. 2
  3. 3

    Zdroj: Ukrainian Journal of Perinatology and Pediatrics; No. 1(93) (2023): Ukrainian Journal of Perinatology and Pediatrics; 57-63
    Украинский журнал Перинатология и Педиатрия; № 1(93) (2023): Ukrainian Journal of Perinatology and Pediatrics; 57-63
    Український журнал Перинатологія і Педіатрія; № 1(93) (2023): Український журнал Перинатологія і Педіатрія; 57-63

    Popis súboru: application/pdf

  4. 4
  5. 5
  6. 6

    Zdroj: Сборник статей

    Popis súboru: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: материалы VII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 17-18 мая 2022 г.; http://elib.usma.ru/handle/usma/10014

  7. 7
  8. 8

    Zdroj: Сборник статей

    Popis súboru: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/6614

  9. 9

    Zdroj: Current Pediatrics; Том 20, № 6 (2021); 484-491 ; Вопросы современной педиатрии; Том 20, № 6 (2021); 484-491 ; 1682-5535 ; 1682-5527

    Popis súboru: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/2775/1130; Milani C, Duranti S, Bottacini F, et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. doi:10.1128/MMBR.00036-17; Sommer F, Backhed F. The gut microbiota — masters of host development and physiology. Nat Rev Microbiol. 2013;11(4): 227–238. doi:10.1038/nrmicro2974; Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. doi:10.1371/journal.pbio.1002533; Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821; Manor O, Dai CL, Kornilov SA, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020;11(1):5206. doi:10.1038/s41467-020-18871-1; DeGruttola AK, Low D, Mizoguchi A, et al. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137–1150. doi:10.1097/MIB.0000000000000750; Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–1340. doi:10.1161/HYPERTENSIONAHA.115.05315; Battson ML, Lee DM, Jarrell DK, et al. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab. 2018;314(5):E468–E477. doi:10.1152/ajpendo.00187.2017; Heintz-Buschart A, Wilmes P. Human Gut Microbiome: Function Matters. Trends Microbiol. 2018;26(7):563–574. doi:10.1016/j.tim.2017.11.002; Cenit MC, Sanz Y, Codoñer-Franch P. Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol. 2017; 23(30):5486–5498. doi:10.3748/wjg.v23.i30.5486; Indiani CMDSP, Rizzardi KF, Castelo PM, et al. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Child Obes. 2018;14(8):501–509. doi:10.1089/chi.2018.0040; Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102(31):11070–11075. doi:10.1073/pnas.0504978102; Kalliomaki M, Collado MC, Salminen S, et al. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87(3):534–538. doi:10.1093/ajcn/87.3.534; Kalliomaki M, Kirjavainen P, Eerola E, et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001;107(1):129–134. doi:10.1067/mai.2001.111237; Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–1191. doi:10.1038/nm.4176; Permall DL, Pasha AB, Chen X-Q, Lu H-Y. The lung microbiome in neonates. Turk J Pediatr. 2019;61(6):821–830. doi:10.24953/turkjped.2019.06.001; Turroni F, Milani C, Duranti S, et al. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020;46(1):16. doi:10.1186/s13052-020-0781-0; Izaskun GM, Alcantara C, Selma-Royo M, et al. MAMI: a birth cohort focused on maternalinfant microbiota during early life. BMC Pediatr. 2019;19(1):140. doi:10.1186/s12887-019-1502-y; Jimenez E, Marin ML, Martin R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159(3):187–193. doi:10.1016/j.resmic.2007.12.007; Gosalbes MJ, Llop S, Valles Y, et al. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013;43(2):198–211. doi:10.1111/cea.12063; Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. doi:10.1126/scitranslmed.3008599; Collado MC, Rautava S, Aakko J, et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. doi:10.1038/srep23129; Zheng J, Xiao X, Zhang Q, et al. The Placental Microbiome Varies in Association with Low Birth Weight in Full-Term Neonates. Nutrients. 2015;7(8):6924–6937. doi:10.3390/nu7085315; Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, et al. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. doi:10.1186/s40168-017-0268-4; Lauder AP, Roche AM, Sherrill-Mix S, et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4(1):29. doi:10.1186/s40168-016-0172-3; Rautava S. Microbial Composition of the Initial Colonization of Newborns. Nestle Nutr Inst Workshop Ser. 2017;88:11–21. doi:10.1159/000455209; Del CF, Vernocchi P, Petrucca A, et al. Phylogenetic and metabolic tracking of gut microbiota during perinatal development. PLoS One. 2015;10(9):e0137347. doi:10.1371/journal.pone.0137347; Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971–11975. doi:10.1073/pnas.1002601107; Al-Balawi M, Morsy FM. Enterococcus faecalis Is a Better Competitor Than Other Lactic Acid Bacteria in the Initial Colonization of Colon of Healthy Newborn Babies at First Week of Their Life. Front Microbiol. 2020;11:2017. doi:10.3389/fmicb.2020.02017; Friedman ES, Bittinger K, Esipova TV, et al. Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc Natl Acad Sci USA. 2018;115(16):4170–4175. doi:10.1073/pnas.1718635115; Bischoff SC, Boirie Y, Cederholm T, et al. Towards a multi-disciplinary approach to understand and manage obesity and related diseases. Clin Nutr. 2017;36(4):917–938. doi:10.1016/j.clnu.2016.11.007; Coscia A, Bardanzellu F, Caboni E, et al. When a Neonate Is Born, So Is a Microbiota. Life (Basel). 2021;11(2):148. doi:10.3390/life11020148; de Goffau MC, Lager S, Sovio U, et al. Human placenta has no microbiome but can contain potential pathogens. Nature. 2019;572(7769):329–334. doi:10.1038/s41586-019-1451-5; Grönlund MM, Grześkowiak Ł, Isolauri E, et al. Influence of mother’s intestinal microbiota on gut colonization in the infant. Gut Microbes. 2011;2(4):227–233. doi:10.4161/gmic.2.4.16799; Kim H, Sitarik AR, Woodcroft K, et al. Breastfeeding, Pet Exposure, and Antibiotic Use: Associations With the Gut Microbiome and Sensitization in Children. Curr Allergy Asthma Rep. 2019;19(4):22. doi:10.1007/s11882-019-0851-9; Shao Y, Forster SC, Tsaliki E, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574(7776):117–121. doi:10.1038/s41586-019-1560-1; Yang B, Chen Y, Stanton C, et al. Bifidobacterium and Lactobacillus Composition at Species Level and Gut Microbiota Diversity in Infants before 6 Weeks. Int J Mol Sci. 2019;20(13):3306. doi:10.3390/ijms20133306; Nagpal R, Tsuji H, Takahashi T, et al. Ontogenesis of the Gut Microbiota Composition in Healthy, Full-Term, Vaginally Born and Breast-Fed Infants over the First 3 Years of Life: A Quantitative Bird’s-Eye View. Front Microbiol. 2017;8:1388. doi:10.3389/fmicb.2017.01388; Kim G, Bae J, Kim MJ, et al. Delayed Establishment of Gut Microbiota in Infants Delivered by Cesarean Section. Front Microbiol. 2020;11:2099. doi:10.3389/fmicb.2020.02099; Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559–566. doi:10.1136/gutjnl-2012-303249; Sitarik AR, Havstad SL, Johnson CC, et al. Association between cesarean delivery types and obesity in preadolescence. Int J Obes (Lond). 2020;44(10):2023–2034. doi:10.1038/s41366-020-00663-8; Bäckhed F, Roswall J, Peng Y, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17(6):690–703. doi:10.1016/j.chom.2015.04.004; Tapiainen T, Paalanne N, Tejesvi MV, et al. Maternal influence on the fetal microbiome in a population-based study of the firstpass meconium. Pediatr Res. 2018;84(3):371–379. doi:10.1038/pr.2018.29; Le Doare K, Holder B, Bassett A, et al. Mother’s Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front Immunol. 2018;9:361. doi:10.3389/fimmu.2018.00361; Lyons KE, Ryan CA, Dempsey EM, et al. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients. 2020;12(4):1039. doi:10.3390/nu12041039; Eshaghi M, Bibalan MH, Rohani M, et al. Bifidobacterium obtained from mother’s milk and their infant stool; A comparative genotyping and antibacterial analysis. Microb Pathog. 2017;111:94–98. doi:10.1016/j.micpath.2017.08.014; Khodayar-Pardo P, Mira-Pascual L, Collado MC, et al. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol. 2014;34(8):599–605. doi:10.1038/jp.2014.47; Moossavi S, Azad MB. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes. 2020;12(1):1667722. doi:10.1080/19490976.2019.1667722; Łubiech K, Twaruzek M. Lactobacillus Bacteria in Breast Milk. Nutrients. 2020;12(12):3783. doi:10.3390/nu12123783; Toscano M, De Grandi R, Grossi E, et al. Role of the Human Breast Milk-Associated Microbiota on the Newborns’ Immune System: A Mini Review. Front Microbiol. 2017;8:2100. doi:10.3748/wjg.v21.i29.8787; Soto A, Martín V, Jiménez E, et al. Lactobacilli and bifidobacteria in human breast milk: Influence of antibiotherapy and other host and clinical factors. J Pediatric Gastroenterol Nutr. 2014;59(1):78–88. doi:10.1097/MPG.0000000000000347; Mastromarino P, Capobianco D, Miccheli A, et al. Administration of a multistrain probiotic product (VSL#3) to women in the perinatal period di_erentially a_ects breast milk beneficial microbiota in relation to mode of delivery. Pharmacol Res. 2015;95–96:63–70. doi:10.1016/j.phrs.2015.03.013; Abrahamsson TR, Sinkiewicz G, Jakobsson T, et al. Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life. J Pediatric Gastroenterol Nutr. 2009;49:349–354. doi:10.1016/j.phrs.2015.03.013; Arroyo R, Martín V, Maldonado A, et al. Treatment of infectious mastitis during lactation: Antibiotics versus oral administration of lactobacilli isolated from breast milk. Clin Infect Dis. 2010;50: 1551–1558. doi:10.1086/652763; Beasley SS, Saris PEJ. Nisin-producing Lactococcus lactis trains isolated from human milk. Appl Environ Microbiol. 2004;70(8): 5051–5053. doi:10.1128/AEM.70.8.5051-5053.2004; Díaz-Ropero M, Martín R, Sierra S, et al. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J Appl Microbiol. 2007;102(2):337–343. doi:10.1111/j.1365-2672.2006.03102.x; Jones KM, Power ML, Queenan JT, et al. Racial and Ethnic Disparities in Breastfeeding. Breastfeed Med. 2015;10(4): 186–196. doi:10.1089/bfm.2014.0152; Azad MB, Nickel NC, Bode L, et al. Breastfeeding and the origins of health: Interdisciplinary perspectives and priorities. Matern Child Nutr. 2021;17(2):e13109. doi:10.1111/mcn.13109; Решетник Л.А. Вскармливание детей первого года: учебное пособие. — Иркутск: ИГМУ; 2019. — 51 с.; Lönnerdal B. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am J Clin Nutr. 2014;99(3):712S–717S. doi:10.3945/ajcn.113.071993; Almeida CC, Mendonça Pereira BF, Leandro KC, et al. Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. Int J Food Sci. 2021;2021:8850080. doi:10.1155/2021/8850080; Smilowitz JT, O’Sullivan A, Barile D, et al. The human milk metabolome reveals diverse oligosaccharide profiles. J Nutr. 2013; 143(11):1709–1718. doi:10.3945/jn.113.178772; Browne PD, Aparicio M, Alba C, et al. Human milk microbiome and maternal postnatal psychosocial distress. Front Microbiol. 2019;10:2333. doi:10.3389/fmicb.2019.02333; Anjum J, Nazir S, Tariq M, et al. Lactobacillus commensals autochthonous to human milk have the hallmarks of potent probio tics. Microbiology (Reading). 2020;166(10):966–980. doi:10.1099/mic.0.000966; Azagra-Boronat I, Tres A, Massot-Cladera M, et al. Rodríguez-Lagunas. Lactobacillus fermentum CECT5716 Supplementation in Rats during Pregnancy and Lactation Impacts Maternal and O_spring Lipid Profile, Immune System and Microbiota. Cells. 2020;9(3):575. doi:10.3390/cells9030575; Maldonado J, Cañabate F, Sempere L, et al. Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J Pediatr Gastroenterol Nutr. 2012;54(1):55–61. doi:10.1097/MPG.0b013e3182333f18; Gil-Campos M, López MÁ, Rodriguez-Benítez MV, et al. Lactobacillus fermentum CECT 5716 is safe and well tolerated in infants of 1–6 months of age: A randomized controlled trial. Pharmacol Res. 2012;65(2):231–238. doi:10.1016/j.phrs.2011.11.016; Martín R, Langa S, Reviriego C, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143:754–758. doi:10.1016/j.jpeds.2003.09.028; Kocabay S, Çetinkaya S. Probiotic Properties of a Lactobacillus fermentum Isolated from Newborn Faeces. J Oleo Sci. 2020; 69(12):1579–1584. doi:10.5650/jos.ess20224; Maldonado-Lobón JA, Gil-Campos M, Maldonado J, et al. Long-term safety of early consumption of Lactobacillus fermentum CECT5716: A 3-year follow-up of a randomized controlled trial. Pharmacol Res. 2015;95–96:12–19. doi:10.1016/j.phrs.2015.01.006; Pérez-Cano FJ, Dong H, Yaqoob P. In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk. Immunobiology. 2010;215(12):996–1004. doi:10.1016/j.imbio.2010.01.004; Maldonado J, Gil-Campos M, Maldonado-Lobón JA, et al. Evaluation of the safety, tolerance and efficacy of 1-year consumption of infant formula supplemented with Lactobacillus fermentum CECT5716 Lc40 or Bifidobacterium breve CECT7263: a randomized controlled trial. BMC Pediatr. 2019;19(1):361. doi:10.1186/s12887-019-1753-7; López-Huertas E. Safety and efficacy of human breast milk Lactobacillus fermentum CECT 5716. A mini-review of studies with infant formulae. Benef Microbes. 2015;6(2):219–224. doi:10.3920/BM2014.0091; Ben XM, Li J, Feng ZT, et al. Low level of galacto-oligosaccharide in infant formula stimulates growth of intestinal Bifidobacteria and Lactobacilli. World J Gastroenterol. 2008;14(42):6564–6568. doi:10.3748/wjg.14.6564; Fanaro S, Marten B, Bagna R, et al. Galacto-oligosaccharides are bifidogenic and safe at weaning: a double-blind randomized multicenter study. J Pediatr Gastroenterol Nutr. 2009;48(1):82–88. doi:10.1097/MPG.0b013e31817b6dd2; Olivares M, Díaz-Ropero MP, Sierra S, et al. Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition. 2007;23(3):254–260. doi:10.1016/j.nut.2007.01.004; Drover JR, Hoffman DR, Castañeda YS, et al. Cognitive function in 18-month-old term infants of the DIAMOND study: a randomized, controlled clinical trial with multiple dietary levels of docosahexaenoic acid. Early Hum Dev. 2011;87(3):223–230. doi:10.1016/j.earlhumdev.2010.12.047; Mie A, Andersen HR, Gunnarsson S, et al. Human health implications of organic food and organic agriculture: a comprehensive review. Environ Health. 2017;16(1):111. doi:10.1186/s12940-017-0315-4; Średnicka-Tober D, Barański M, Seal CJ, et al. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systema tic literature review and meta-and redundancy analyses. Br J Nutr. 2016;115(6):1043–1060. doi:10.1017/S0007114516000349; Woods VB, Fearon AM. Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: a review. Livest Sci. 2009;126(1):1–20. doi:10.1016/j.livsci.2009.07.002

  10. 10
  11. 11
  12. 12
  13. 13

    Zdroj: Meditsinskiy sovet = Medical Council; № 18 (2020); 103-109 ; Медицинский Совет; № 18 (2020); 103-109 ; 2658-5790 ; 2079-701X

    Popis súboru: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/5901/5386; Benninga M.A., Faure C., Hyman P.E., St. James Roberts I., Schechter N.L., Nurko S. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroenterology. 2016;150(6):1443– 1455.e2. doi:10.1053/j.gastro.2016.02.016.; Mahon J., Lifschitz C., Ludwig T., Thapar N., Glanville J., Miqdady M. et al. The costs of functional gastrointestinal disorders and related signs and symptoms in infants: a systematic literature review and cost calculation for England. BMJ Open. 2017;7:e015594. doi:10.1136/bmjopen-2016-015594.; Iacono G., Merolla R., D’Amico D., Bonci E., Cavataio F., Di Prima L. et al. Gastrointestinal symptoms in infancy: a population-based prospective study. Dig Liver Dis. 2005;37(6):432–438. doi:10.1016/j.dld.2005.01.009.; Vandenplas Y., Abkari A., Bellaiche M., Benninga M., Chouraqui J.P., Çokura F. et al. Prevalence and health outcomes of functional gastrointestinal symptoms in infants from birth to 12 months of age. J Pediatr Gastroenterol Nutr. 2015;61(5):531–537. doi:10.1097/MPG.0000000000000949.; Canivet C., Hagander B., Jakobsson I., Lanke J. Infantile colic – less common than previously estimated? Acta Paediatr. 1996;85(4):454–458. doi:10.1111/j.1651-2227.1996.tb14060.x.; Savino F. Focus on infantile colic. Acta Paediatr. 2007;96(9):1259–1264. doi:10.1111/j.1651-2227.2007.00428.x.; Shamir R., St James-Roberts I., Di Lorenzo C., Burns A.J., Thapar N., Indrio F. et al. Infant crying, colic, and gastrointestinal discomfort in early childhood: a review of the evidence and most plausible mechanisms. J Pediatr Gastroenterol Nutr. 2013;57(Suppl. 1):1–45. doi:10.1097/MPG.0b013e3182a154ff.; Räihä H., Lehtonen L., Huhtala V., Saleva K., Korvenranta H. Excessively crying infant in the family: mother-infant, father-infant and motherfather interaction. Child Care Health Dev. 2002;28(5):419–429. doi:10.1046/j.1365-2214.2002.00292.x.; Akman I., Kusçu K., Ozdemir N., Yurdakul Z., Solakoglu M., Orhan L. et al. Mothers’ postpartum psychological adjustment and infantile colic. Arch Dis Child. 2006;91(5):417–419. doi:10.1136/adc.2005.083790.; Delplanque B., Gibson R., Koletzko B., Lapillonne A., Strandvik B. Lipid quality in infant nutrition: current knowledge and future opportunities. J Pediatr Gastroenterol Nutr. 2015;61(1):8–17. doi:10.1097/MPG.0000000000000818.; Koletzko B. Human milk lipids. Ann Nutr Metab. 2016;69(Suppl. 2):28–40. doi:10.1159/000452819.; Zou L., Pande G., Akoh C.C. Infant formula fat analogs and human milk fat: new focus on infant developmental needs. Annu Rev Food Sci Technol. 2016;7:139–165. doi:10.1146/annurev-food-041715-033120.; Breckenridge W.C., Marai L., Kuksis A. Triglyceride structure of human milk fat. Can J Biochem. 1969;47(8):761–769. doi:10.1139/o69-118.; Mattson F.H., Volpenhein R.A. The specific distribution of fatty acids in the glycerides of vegetable fats. J Biol Chem. 1961;236(7):1891–1894. Available at: https://www.jbc.org/content/236/7/1891.full.pdf.; Iwasaki Y., Yamane T. Enzymatic synthesis of structured lipids. Adv Biochem Eng Biotechnol. 2004;90:151–171. doi:10.1007/b94196.; Yaron S., Shachar D., Abramas L., Riskin A., Bader D., Litmanovitz I. et al. Effect of high β-palmitate content in infant formula on the intestinal microbiota of term infants. J Pediatr Gastroenterol Nutr. 2013;56(4):376–381. doi:10.1097/MPG.0b013e31827e1ee2.; Smilowitz J.T., Lebrilla C.B., Mills D.A., German J.B., Freeman S.L. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr. 2014;34:143–169. doi:10.1146/annurevnutr-071813-105721.; Bode L., Jantscher-Krenn E. Structure-function relationships of human milk oligosaccharides. Adv Nutr. 2012;3(3):383–391. doi:10.3945/an.111.001404.; Thurl S., Munzert M., Boehm G., Matthews C., Stahl B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev. 2017;75(11):920–933. doi:10.1093/nutrit/nux044.; Newburg D.S., Ruiz-Palacios G.M., Morrow A.L. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr. 2005;25:37–58. doi:10.1146/annurev.nutr.25.050304.092553.; Abrahams S.W., Labbok M.H. Breastfeeding and otitis media: A review of recent evidence. Curr Allergy Asthma Rep. 2011;11:508–512. doi:10.1007/s11882-011-0218-3.; Downham M.A., Scott R., Sims D.G., Webb J.K., Gardner P.S. Breastfeeding protects against respiratory syncytial virus infections. Br Med J. 1976;2:274–276. doi:10.1136/bmj.2.6030.274.; Martin-Sosa S., Martin M.J., Hueso P. The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J Nutr. 2002;132(10):3067–3072. doi:10.1093/jn/131.10.3067.; Trompette A., Gollwitzer E. S., Yadava K., Sichelstiel A. K., Sprenger N., Ngom-Bru C. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–166. doi:10.1038/nm.3444.; Donovan S.M., Comstock S.S. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann Nutr Metab. ;69(Suppl. 2):42–51. doi:10.1159/000452818.; Xiao L., van’t Land B., van de Worp W.R.P.H., Stahl B., Folkerts G., Garssen J. Early-Life Nutritional Factors and Mucosal Immunity in the Development of Autoimmune Diabetes. Front Immunol. 2017;8:1219. doi:10.3389/fimmu.2017.01219.; Zuurveld M., van Witzenburg N.P., Garssen J., Folkerts G., Stahl B., van’t Land B., Willemsen L.E.M. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Frontiers in Immunology. 2020;11:801. doi:10.3389/fimmu.2020.00801.; Meyrand M., Dallas D.C., Caillat H., Bouvier F., Martin P., Barile D. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize as1-casein. Small Rumin Res. 2013;113(2–3):411–420. doi:10.1016/j.smallrumres.2013.03.014.; Lara-Villoslada, F., Debras E., Nieto A., Concha A., Gálvez J., López-Huertas E. et al. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis. Clin Nutr. 2006;25(3):477–488. doi:10.1016/j.clnu.2005.11.004.; Daddaoua A., Puerta V., Requena P., Martínez-Férez A., Guadix E., de Medina F.S. et al. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr. 2006;136(3):672–676. doi:10.1093/jn/136.3.672.; Hess J.R., Greenberg N.A. The Role of nucleotides in the immune and gastrointestinal systems potential clinical applications. Nutr Clin Pract. 2012;27(2):281–294. doi:10.1177/0884533611434933.; Buck R.H., Thomas D.L., Winship T.R., Cordle C.T., Kuchan M.J., Baggs G.E. et al. Effect of dietary ribonucleotides on infant immune status. Part 2: Immune cell development. Pediatr Res. 2004;56(6):891–900. doi:10.1203/01.PDR.0000145577.03287.FA.; Yau K.I., Huang C.-B., Chen W., Chen Sh.-J., Chou Y.-H., Huang F.-Y. et al. Effect of nucleotides on diarrhea and immune responses in healthy term infants in Taiwan. J Pediatr Gastroenterol Nutr. 2003;36(1):37–43. doi:10.1097/00005176-200301000-00009.; EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2012b. Scientific Opinion on the suitability of goat milk protein as a source of protein in infant formulae and in follow‐on formulae. EFSA J. 2012;10(3):2603. doi:10.2903/j.efsa.2012.2603.; Jenness R. Composition and characteristics of goat milk. J Dairy Sci. 1980;63:1605–1630. doi:10.3168/jds.S0022-0302(80)83125-0.; Bevilacqua C., Martin P., Candalh C., Fauquant J., Piot M., Roucayrol A.M. et al. Goat’s milk of defective alpha (sl)-casein genotype decreases intestinal and systemic sensitization to beta-lactoglobulin in guinea pigs. J Dairy Res. 2001;68(2):217–227. doi:10.1017/s0022029901004861.; Haenlein G.F.W. Goat milk in human nutrition. Small Rumin Res. 2004;51(2):155–163. doi:10.1016/j.smallrumres.2003.08.010.; Xu M., Wei L., Dai Z., Zhang Y., Li Y., Wang J. Effects of goat milk-based formula on development in weaned rats. Food Nutr Res. 2015;59:28610. doi:10.3402/fnr.v59.28610.; Захарова И.Н., Сугян Н.Г., Бережная И.В. Функциональные гастроинтестинальные расстройства у детей раннего возраста: критерии диагностики и подходы к диетотерапии. Российский вестник перинатологии и педиатрии. 2018;63(1):113–121. doi:10.21508/1027-4065-2018-63-1-113-121.

  14. 14
  15. 15
  16. 16
  17. 17

    Zdroj: Current Pediatrics; Том 18, № 2 (2019); 109-117 ; Вопросы современной педиатрии; Том 18, № 2 (2019); 109-117 ; 1682-5535 ; 1682-5527

    Popis súboru: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document

    Relation: https://vsp.spr-journal.ru/jour/article/view/2076/859; https://vsp.spr-journal.ru/jour/article/view/2076/864; Альбицкий В.Ю., Терлецкая Р.Н. Младенческая смертность в Российской Федерации в условиях новых требований к регистрации рождения. — М.: ПедиатрЪ, 2016. — 88 с.; AAP Task Force on Sudden Infant Death Syndrome. SIDS and other sleep-related infant deaths: updated 2016 Recommendations for a safe infant sleeping environment. Pediatrics. 2016;138(5):e20162938. doi:10.1542/peds.2016-2938.; Friedman SB, Bergman AB, Mandell F, et al. Statement on terminology from the national SIDS foundation. Pediatrics. 1981;99(4):664. doi:10.1016/S0022-3476(81)80291-0.; National Institutes of Health, Consensus Development Conference on Infantile apnea and home monitoring. Pediatrics. 1987;79:292–299.; Dewolfe CC. Apparent life-threatening event: a review. Pediatr Clin North Am. 2005;52(4):1127–1146. doi:10.1016/j.pcl.2005.05.004.; Kiechl-Kohlendorfer U, Hof D, Peglow UP, et al. Epidemiology of apparent life threatening events. Arch Dis Child. 2005; 90(3):297–300. doi:10.1136/adc.2004.049452.; Esani N, Hodgman JE, Ehsani N, Hoppenbrouwers T. Apparent life-threatening events and sudden infant death syndrome: comparison of risk factors. J Pediatr. 2008;152(3):365–370. doi:10.1016/j.jpeds.2007.07.054.; Edner A, Wennborg M, Alm B, Lagercrantz H. Why do ALTE infants not die in SIDS? Acta Paediatr. 2007;96(2):191–194.; Fleming PJ, Blair P, Bacon C, Berry PJ. The CESDI SUDI Studies 1993–1996. London: The Stationery Office; 2000.; Kahn A, Groswasser J, Rebuffat E, et al. Why should infants with sleep apneas and apparent life-threatening events be recorded polygraphically? Pediatr Pulmonol Suppl. 1995;11:89–90. doi:10.1002/ppul.1950191144.; Monti MC, Borrelli P, Nosetti L, et al. Incidence of apparent lifethreatening events and post-neonatal risk factors. Acta Paediatr. 2017;106(2):204–210. doi:10.1111/apa.13391.; Davies F, Gupta R. Apparent life threatening events in infants presenting to an emergency department. Emerg Med J. 2002;19(1):11–16. doi:10.1136/emj.19.1.11.; Mittal MK, Sun G, Baren JM. A clinical decision rule to identify infants with apparent life-threatening event who can be safely discharged from the emergency department. Pediatr Emerg Care. 2012;28(7):599–605. doi:10.1097/PEC.0b013e31825cf576.; Kaji AH, Claudius I, Santillanes G, et al. Apparent life-threatening event: multicenter prospective cohort study to develop a clinical decision rule for admission to the hospital. Ann Emerg Med. 2013;61(4):379–387. doi:10.1016/j.anne mergmed.2012.08.035.; Fu LY, Moon RY. Apparent life-threatening events: an update. Pediatr Rev. 2012;33(8):361–368. doi:10.1542/pir.33-8-361.; Tieder JS, Altman RL, Bonkowsky JL, et al. Management of apparent life-threatening events in infants: a systematic review. J Pediatr. 2013;163:94–99. doi:10.1016/j.jpeds.2012.12.086.; Claudius I, Keens T. Do all infants with apparent lifethreatening events need to be admitted? Pediatrics. 2007;119(4): 679–683. doi:10.1542/peds.2006-2549.; Tieder JS, Bonkowsky JL, Etzel RA, et al. Subcommittee on apparent life threatening events. Brief Resolved Unexplained Events (Formerly Apparent Life-Threatening Events) and Evaluation of Lower-Risk Infants. Pediatrics. 2016;137(5):e20160590. doi:10.1542/peds.2016-0590.; International Classification of Diseases, 10thRevision [Internet]. Available from: https://icd10coded.com/cm/ch18/R50-R69/R68/R68.13/.; Кораблева Н.Н., Кустышев И.Г. Очевидное жизнеугрожающее событие в практике педиатра: анализ случаев по материалам ГУ «Республиканская детская больница» г. Сыктывкара // Детская больница. — 2013. — № 3. — С. 7–11.; Территориальный орган Федеральной службы государственной статистики по Республике Коми. Оценка численности населения по городским округам, муниципальным районам, поселениям и городским населенным пунктам на 1 января 2017 года. — Сыктывкар; 2018. Доступ по: http://komi.gks.ru/wps/wcm/connect/rosstat_ts/komi/ru/statistics/population/. Ссылка активна на 31.01.2019.; Национальные рекомендации по определению риска и профилактике внезапной сердечной смерти. — 2-е изд. — М.: ИД «Медпрактика-М»; 2018. — 247 с.; Mitchell EA, Thompson JM. Parental reported apnoea, admissions to hospital and sudden infant death syndrome. Acta Paediatr. 2001;90(4):417–422. doi:10.1111/j.1651-2227.2001.tb00443.x.; Wennergren G, Milerad J, Lagercrantz H, et al. The epidemiology of sudden infant death syndrome and attacks of lifelessness in Sweden. Acta Paediatr Scand. 1987;76(6):898–906. doi:10.1111/j.1651-2227.1987.tb17261.x.; Polberger S, Svenningsen NW. Early neonatal sudden infant death and near death of fullterm infants in maternity wards. Acta Paediatr Scand. 1985;74:861–866. doi:10.1111/j.1651-2227.1985.tb10049.x.; Stratton SJ, Taves A, Lewis RJ, et al. Apparent life-threatening events in infants: high risk in the out-of-hospital environment. Ann Emerg Med. 2004;43(6):711–717. doi:10.1016/S0196064403011193.; Brand DA, Altman RL, Purtill K, Edwards KS. Yield of diagnostic testing in infants who have had an apparent life-threatening event. Pediatrics. 2005;115(4):885–893. doi:10.1542/peds.2004-0847.; Santiago-Burruchaga M, Sanchez-Etxaniz J, Benito-Fernandez J, et al. Assessment and management of infants with apparent life-threatening events in the paediatric emergency department. Eur J Emerg Med. 2008;15(4):203–208. doi:10.1097/MEJ.0b013e3282f4d13a.; Semmekrot BA, van Sleuwen BE, Engelberts AC, et al. Surveillance study of apparent life-threatening events (ALTE) in the Netherlands. Eur J Pediatr. 2010;169(2):229–236. doi:10.1007/s00431-009-1012-2.; Kadivar M, Yaghmaie B, Allahverdi B, et al. Apparent lifethreatening events in neonatal period: clinical manifestations and diagnostic challenges in a pediatric referral center. Iran J Pediatr. 2013;23(4):458–466.; Hasenstab KA, Jadcherla SR. Respiratory events in infants presenting with apparent life threatening events: is there an explanation from esophageal motility? J Pediatr. 2014;165(2): 250–255. doi:10.1016/j.jpeds.2014.02.003.; Vandenplas Y, Rudolph CD, Di Lorenzo C, et al.; North American Society for Pediatric Gastroenterology Hepatology and Nutrition; European Society for Pediatric Gastroenterology Hepatology and Nutrition. Pediatric gastroesophageal refl ux clinical practice guidelines: joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition (NASPGHAN) and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN). J Pediatr Gastroenterol Nutr. 2009;49(4):498–547. doi:10.1097/MPG.0b013e3181b7f563.; Benoist G, Chevallier B, Bidat E. Apparent life-threatening events due to cow’s milk allergy in infants. Arch Pediatr. 2014; 21(5):489–492. doi:10.1016/j.arcped.2014.02.020.; Бокерия О.Л., Санакоев М.К. Синдром удлиненного Q-T интервала // Анналы аритмологии. — 2015. — № 2. — С. 114–127. doi:10.15275/annaritmol.2015.2.7.; Rodday AM, Triedman JK, Alexander ME, et al. Elec trocardiogram screening for disorders that cause sudden cardiac death in asymptomatic children: a meta-analysis. Pediatrics. 2012; 129:e999–e1010. doi:10.1542/peds.2011-0643.; Colombo M, Katz ES, Bosco A, et al. Brief resolved unexplained events: Retrospective validation of diagnostic criteria and risk stratification. Pediatr Pulmonol. 2019;54:61–65. doi:10.1002/ppul.24195.

  18. 18
  19. 19

    Zdroj: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 63, № 2 (2018); 58-63 ; Российский вестник перинатологии и педиатрии; Том 63, № 2 (2018); 58-63 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2018-63-2

    Popis súboru: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/646/619; Ларечина Е.В. Развитие эмоциональных отношений матери и ребенка. СПб: Речь, 2014; 160.; Изард К.Э. Психология эмоций. СПб: Питер 2011; 783.; Бочарова Е.А. Медико–социальные факторы риска в формировании отклонений в психическом и речевом развитии в детском возрасте Рос вестн перинатол и педиатр 2007; 52(4): 39–42.; Сакаева Д.Р., Хайретдинова Т.Б. Нервно-психическое развитие детей раннего возраста и факторы, его определяющие. Молодой ученый 2011; 2(6): 194–198.; Янкина Е.И. Эмоции в развитии интеллекта ребенка. Тезисы научно-практической конференции. СПБ 1999; 238–239.; Кулагина И.Ю. Возрастная психология: Полный жизненный цикл развития человека. М: ТЦ Сфера 2004; 464.; Ломиворотов В.Н., Зельман В.Л., Караськов А.М., Постнов В.Г. Генетические аспекты защиты мозга. Сибирский медицинский журнал 2009; 3: 63–65.; Perlman J.M. Neurology: neonatology questions and controversies. Saunders, Elsevier 2008; 288.

  20. 20

    Zdroj: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 62, № 6 (2017); 92-98 ; Российский вестник перинатологии и педиатрии; Том 62, № 6 (2017); 92-98 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2017-62-6

    Popis súboru: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/597/581; Тутельян В.А., Конь И.Я. (ред.). Детское питание. Руководство для врачей. М: МИА 2009; 946. [Tutel’yan V.A., Kon’ I.Ya. (eds). Baby food. A guide for doctors. Moscow: MIA 2009; 946. (in Russ)]; Национальная программа оптимизации вскармливания детей первого года жизни в Российской Федерации. Москва 2011; 67. [National program to optimize the feeding of children of the first year of life in the Russian Federation. Moscow 2011; 67. (in Russ)]; Сорвачева Т.Н., Гордеева Е.А., Аникиева Е.Н. Прикорм. От регламентов к индивидуальному подходу. Вопр соврем педиатрии 2011; 10 (5): 45–48. [Sorvacheva T.N., Gordeeva E.A., Anikieva E.N. Complementary food. From the regulations to the individual approach. Voprosy sovremennoi pediatrii 2011; 10 (5): 45–48. (in Russ)]; Бельмер С.В. Прикорм: значение для процессов адаптации и принципы введения. Вопр детской диетологии 2014; 12 (2): 50–56. [Bel’mer S. V. Complementary food: value for adaptation processes and principles of introduction. Voprosy detskoi dietologii. 2014; 12 (2): 50–56. (in Russ)]; Лукушкина Е.Ф., Медянцева М.Г., Власова И.Н. Программирующая сила прикорма Педиатрия. Доктор.Ру 2017; 4 (133): 17–21. [Lukushkina E.F., Medjanceva M.G., Vlasova I.N. The programming power of complementary foods. Pediatrija. Doktor.Ru 2017; 4 (133): 17–21. (in Russ)]; Макарова С.Г. Практические рекомендации по введению прикорма. Педиат фармакол 2015; 12 (6): 66–73. (Makarova S.G. Practical recommendations for the introduction of complementary foods. Pediat farmakol 2015; 12 (6): 66–73. (in Russ)]; Камалова А.А. Современные подходы к профилактике ожирения у детей. Рос вестн перинатол и педиат 2016; 61 (6): 43–48. [Kamalova A.A. Modern approaches to the prevention of obesity in children. Ros vestn perinatol i pediat 2016; 61 (6): 43–48. DOI:10.21508/1027-4065-2016-61-6-43-48 (in Russ)]; Agostoni C., Decsi T., Fewtrell M., Goulet O., Kolacek S., Koletzko B. et al. Complementary feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 2008; 46: 99–110. DOI:10.1097/01.mpg.0000304464.60788.bd; Filipiak B., Zutavern A., Koletzko S., von Berg A., Brockow I., Grübl A. et al. Solid food introduction in relation to eczema: results from a four-year prospective birth cohort study. J Pediatr 2007; 151 (4): 352–358. DOI:10.1016/j.jpeds.2007.05.018; Kramer M.S., Chalmers B., Hodnett E.D., Sevkovskaya Z., Dzikovich I., Shapiro S. et al. Promotion of Breastfeeding Intervention Trial (PROBIT): a randomized trial in the Republic of Belarus. JAMA 2001; 285 (4): 413–420.; Zutavern A., Brockow I., Schaaf B., von Berg A., Diez U., Borte M. et al. Timing of Solid Food Introduction in Relation to Eczema, Asthma, Allergic Rhinitis, and Food and Inhalant Sensitization at the Age of 6 Years: Results From the Prospective Birth Cohort Study LISA. PEDIATRICS 2008; 121 (1): e44–52. doi:10.1542/peds.2006-3553; World Health Organization. 2002. 55th World Health Assembly. Infant and Young Child Nutrition. (WHA55.25). http://apps.who.int/gb/archive/pdf_files/WHA55/ewha5525.pdf/ Accessed March 11, 2016.; Fewtrell M., Bronsky J., Campoy C. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr 2017; 64 (1): 119–132. DOI:10.1097/MPG.0000000000001454.; Kramer M.S., Kakuma R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst. Rev 2012; 8: CD003517. DOI:10.1002/14651858.CD003517.pub2; Kramer M.S., Guo T., Platt R.W., Sevkovskaya Z., Dzikovich I., Collet J.P. et al. Infant growth and health outcomes associated with 3 compared with 6 mo of exclusive breastfeeding. Am J Clin Nutr 2003; 78: 291–295.; Perkin M.R., Logan K., Tseng A., Raji B., Ayis S., Peacock J. et al. Randomized trial of introduction of allergenic foods in breast-fed infants. N Engl J Med 2016; 374: 1733–1743. DOI:10.1056/NEJMoa1514210; EAT Study http://www.eatstudy.co.uk; Mehta K., Specker B., Bartholmey S., Giddens J., Ho M.L. Trial on timing of introduction to solids and food type on infant growth. Pediatrics 1998; 102: 569–573.; Northstone K., Emmett P., Nethersole F. The effect of age of introduction to lumpy solids on foods eaten and reported feeding difficulties at 6 and 15 months. J Hum Nutr Diet 2001; 14: 43–54.; Coulthard H., Harris G., Emmett P. Delayed introduction of lumpy foods to children during the complementary feeding period affects child’s food acceptance and feeding at 7 years of age. Mat Child Nutr 2009; 5: 75–85. DOI:10.1111/j.1740–8709.2008.00153.x; Snijders B.E., Thijs C., van Ree R. Age at first introduction of cow milk products and other food products in relation to infant atopic manifestations in the first 2 years of life: the KOALA Birth Cohort Study. Pediatrics 2008; 122 (1): e115–122. DOI:10.1542/peds.2007-1651; Chuang C.H., Hsieh W.S., Chen Y.C., Chang P.J., Hurng B.S., Lin S.J. et al. Infant feeding practices and physician diagnosed atopic dermatitis: a prospective cohort study in Taiwan. Pediatr Allergy Immunol 2011; 22 (1 Pt 1): 43–49. DOI:10.1111/j.1399-3038.2010.01007.x; Muraro A., Halken S., Arshad S.H., Beyer K., Dubois A.E., Du Toit G. et al. EAACI food allergy and anaphylaxis guidelines. Primary prevention of food allergy. Allergy 2014; 69: 590–601. DOI:10.1111/all.12398; Nwaru B.I., Erkkola M., Ahonen S., Kaila M., Haapala A.-M., Kronberg-Kippilä C. et al. Age at the introduction of solid foods during the first year and allergic sensitization at age 5 years. Pediatrics 2010; 125: 50–59. DOI:10.1542/peds.2009-0813; Ierodiakonou D., Garcia-Larsen V., Logan A., Groome A., Cunha S., Chivinge J. al. Timing of allergenic food introduction to the infant diet and risk of allergenic or autoimmune disease. A systematic review and meta-analysis. JAMA 2016; 316: 1181–1192. DOI:10.1001/jama.2016.12623; Du Toit G., Roberts G., Sayre P.H., Bahnson H.T., Radulovic S., Santos A.F. et al. Randomised trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 2015; 372: 803–813. DOI:10.1056/NEJMoa1414850; Du Toit G., Sayre P.H., Roberts G., Sever M.L., Lawson K., Bahnson H.T. et al. Effect of avoidance on peanut allergy after early peanut consumption. N Engl J Med 2016; 374: 1435– 1443. DOI:10.1056/NEJMoa1514209; www.leapstudy.co.uk; Fleischer D.M., Sicherer S., Greenhawt M. Consensus communication on early peanut introduction and the prevention of peanut allergy in high-risk infants. Allergy 2015; 70: 1193– 1195. DOI:10.1111/pde.12685; Perkin M.R., Logan K., Marrs T., Radulovic S., Craven J., Flohr C. et al. Enquiring early about tolerance (EAT) study: feasibility of an early allegenic food introduction regimen. J Allergy Clin Immunol 2016; 137 (5): 1477–1486. doi:10.1016/j.jaci.2015.12.1322.; Турти Т.В., Макарова С.Г., Зимина Е.П. Профилактика аллергии у детей в период введения продуктов прикорма (в помощь практическому врачу). Вопр соврем педиат 2014; 13 (6): 512–556. [Turti T.V., Makarova S.G., Zimina E.P. Prevention of allergies in children during the introduction of complementary feeding (to help a practical doctor). Vopr sovrem pediat 2014; 13 (6): 512–556. (in Russ)]; Vriezinga S.L., Auricchio R., Bravi E., Castillejo G., Chmielewska A., Escobar P. C. et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med 2014; 371: 1304–1315. DOI:10.1056/NEJMoa1404172; Lionetti E., Castellaneta S., Francavilla R., Pulvirenti A., Tonutti E., Amarri S. et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. NEJM 2014; 371: 1295–1303. DOI:10.1056/NEJMoa1400697; Szajewska H., Shamir R., Chmielewska A., Pieścik-Lech M., Auricchio R., Ivarsson A. et al. Systematic review with metaanalysis: early infant feeding and coeliac disease–update 2015. Aliment Pharmacol Ther 2015; 41: 1038–1054. DOI:10.1111/apt.13163; Szajewska H., Shamir R., Mearin L., Ribes-Koninckx C., Catassi C., Domellöf M. et al. Gluten introduction and the risk of coeliac disease: a position paper by the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2016; 62: 507–513. doi:10.1097/MPG.0000000000001105; Cameron S.L., Heath A.L.M., Taylor R.W. How feasible is babyled weaning as an approach to infant feeding? A review of the evidence. Nutrients 2012; 4: 1575–1609. DOI:10.3390/nu4111575; Cameron S.L., Taylor R.W., Heath A.L.M. Development and pilot testing of baby-led introduction to SolidS–a version of baby-led weaning modified to address concerns about iron deficiency, growth faltering and choking. BMC Pediatr 2015; 15: 99. DOI:10.1186/s12887-015-0422-8 Поступила 17.08.17 Received on 2017.08.17