Search Results - "ДИАГНОСТИЧЕСКИЕ КРИТЕРИИ"
-
1
Authors:
Source: University Therapeutic Journal, Vol 7, Iss 2 (2025)
Subject Terms: клинический случай, дети, симптомы, диагностические критерии, Medicine
File Description: electronic resource
-
2
Source: Наука и здравоохранение. :271-274
-
3
Authors: et al.
Source: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 80 No. 3 (2024): Medical Sciences; 116-121 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 80 Nr. 3 (2024): Ştiinţe medicale; 116-121 ; Вестник Академии Наук Молдовы. Медицина; Том 80 № 3 (2024): Медицина; 116-121 ; 1857-0011
Subject Terms: Церебральный венозный тромбоз, COVID-19, диагностические критерии, антикоагулянты, Tromboza venoasă cerebrală, criterii de diagnostic, anticoagulante, Cerebral venous thrombosis, diagnostic criteria, anticoagulants
File Description: application/pdf
Relation: https://bulmed.md/bulmed/article/view/3731/3722; https://bulmed.md/bulmed/article/view/3731
-
4
Authors: et al.
Source: A breakthrough in science: development strategies; 45-55 ; Новое слово в науке: стратегии развития; 45-55
Subject Terms: diagnostic criteria, диагностические критерии, категориальная и дименсиональная концепция расстройств личности, уровень функционирования личности, патологические черты личности, МКБ-11, DSM-5, категориальная диагностика расстройств личности, критический обзор, categorical and dimensional concept of personality disorders, level of personality functioning, pathological personality traits, ICD-11, categorical diagnosis of personality disorders, critical review
File Description: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6054101-1-9; https://interactive-plus.ru/e-articles/944/Action944-575269.pdf; Murray H.A. Toward a classification of interaction // Toward a general theory of action. 1951. P. 434–464.; Strelau J. Temperament, osobowość, działanie. Naukowe, 1985.; Costa Jr.P.T., McCrae R.R. Four ways five factors are basic // Personality and individual differences. 1992. Vol. 13. No. 6. P. 653–665.; Hein K.E. et al. Perception of stigma across diagnostic models of personality pathology // Personality Disorders: Theory, Research, and Treatment. 2024. Vol. 15. No. 5. P. 332. https://doi.org/10.1037/per0000678. EDN: RQGNCL; Pan B., Wang W. Practical implications of ICD-11 personality disorder classifications // BMC psychiatry. 2024. Vol. 24. No. 1. P. 191. https://doi.org/10.1186/s12888-024-05640-3. EDN: JFQKPX; Cervone D., Pervin L.A. Personality: Theory and research. John Wiley & Sons, 2022.; Clark L.A. et al. Personality disorder coverage, prevalence, and convergence: do the DSM-5's two models of personality disorder identify the same patients? // Psychological Medicine. 2024. Vol. 54. No. 9. P. 2210–2221.; Serafim A.P., Ferreira T.C., Barros D.M. Challenges in assessing severity levels in personality disorders // Jornal Brasileiro de Psiquiatria. 2024. Vol. 73. No. 2. P. e20230092.; Vaillant G.E. Ego mechanisms of defense and personality psychopathology // Journal of abnormal psychology. 1994. Vol. 103. No. 1. P. 44.; Stulcbauer L.B. et al. Mapping Emotion Regulation Patterns Within the Alternative Model of Personality Disorders Personality Traits // Journal of personality disorders. 2024. Vol. 38. No. 4. P. 311–329. https://doi.org/10.1521/pedi.2024.38.4.311. EDN: WLSLPY; American Psychiatric Association, DSM-5 Task Force. Diagnostic and statistical manual of mental disorders: DSM-5™ (5th ed.). American Psychiatric Publishing. 2013.; WHO (15 April 2016). «International Statistical Classification of Diseases and Related Health Problems: update on the eleventh revision».; Hopwood C.J. et al. The time has come for dimensional personality disorder diagnosis // Personality and mental health. 2018. Vol. 12. No. 1. P. 82–86.; García L.F. et al. The alternative model of personality disorders: Assessment, convergent and discriminant validity, and a look to the future //Annual review of clinical psychology. 2024. Vol. 20.; Krueger R.F. et al. Progress in achieving quantitative classification of psychopathology // World psychiatry. 2018. Vol. 17. No. 3. P. 282–293.; Kim Y.R., Lee Y. The dimensional conceptualization of personality disorders: Personality organization, personality functioning, and personality disorders // Journal of Personality Disorders. 2024. Vol. 38. No. 2. P. 105–125. https://doi.org/10.1521/pedi.2024.38.2.105. EDN: FQQYAK; American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders (5th ed., Text Rev.). 2022. DOI:10.1176/appi.books.9780890425787; Diagnostic and Statistical Manual of Mental Disorders 3rd ed.; DSM-III; American Psychiatric Association, 1980; American Psychiatric Association. Diagnostic and statistical manual of mental disorders (4th ed., text rev.). 2000. DOI:10.1176/appi.books.9780890423349; World Health Organization (WHO). The ICD-10 Classification of Mental and Behavioral Disorders.; Sahlsten H. et al. Psychiatric (Axis I) and personality (Axis II) disorders and subjective psychiatric symptoms in chronic tinnitus // International journal of audiology. 2018. Vol. 57. No. 4. P. 302–312.; Wiggins J.S., Pincus A.L. Conceptions of personality disorders and dimensions of personality // Psychological assessment: A journal of consulting and clinical psychology. 1989. Vol. 1. No. 4. P. 305.; Ruchensky J.R. et al. Using the Personality Assessment Inventory to assess the Alternative Model for Personality Disorders: Criterion validity in a clinical sample // Journal of Personality assessment. 2024. Vol. 106. No. 1. P. 72–82. https://doi.org/10.1080/00223891.2023.2203240. EDN: TCLTFZ; Kernberg O.F. What is personality? // Journal of personality disorders. 2016. Vol. 30. No. 2. P. 145–156.; Mullins-Sweatt S.N., Lengel G.J. Clinical Utility of the Five-Factor Model of Personality Disorder // Journal of personality. 2012. Vol. 80. No. 6. P. 1615–1639.; Bangash A. Personality difficulty: A useful addition to the literature on personality disturbance // Personality and Mental Health. 2024. Vol. 18. No. 4. P. 435–437. https://doi.org/10.1002/pmh.1638. EDN: JDBPJC; Christensen A.P., Golino H., Silvia P.J. A psychometric network perspective on the validity and validation of personality trait questionnaires // European Journal of Personality. 2020. Vol. 34. No. 6. P. 1095–1108. https://doi.org/10.1002/per.2265. EDN: BCUJAY; Salzer S. et al. Interpersonal subtypes within generalized anxiety disorder // Journal of Personality Assessment. 2008. Vol. 90. No. 3. P. 292–299.; Lind M., Sharp C., Dunlop W. L. Why, how, and when to integrate narrative identity within dimensional approaches to personality disorders // Journal of personality disorders. 2022. Vol. 36. No. 4. P. 377–398. https://doi.org/10.1521/pedi_2012_35_540. EDN: QPQUGY; Lowyck B. et al. Levels of personality functioning and their association with clinical features and interpersonal functioning in patients with personality disorders // Journal of personality disorders. 2013. Vol. 27. No. 3. P. 320–336.; Lowyck B. et al. Changes in Self and Object Representations as Measured by the Differentiation-Relatedness Scale in Patients with a Personality Disorder During a Hospitalization-Based Psychodynamic Treatment // Psychoanalytic Inquiry. 2025. Vol. 45. No. 1. P. 69–79. https://doi.org/10.1080/07351690.2025.2451016. EDN: HJPBBM; Söderholm J.J. Borderline personality disorder-a narrative review // Psychiatria Fennica. 2024. Vol. 55. P. 124–139.; Widiger T.A., Trull T.J. Plate tectonics in the classification of personality disorder: shifting to a dimensional model // American Psychologist. 2007. Vol. 62. No. 2. P. 71.; Zavlis O. et al. Pressing need for clinical trial research on dimensional personality disorder. 2024.; Trull T.J., Durrett C.A. Categorical and dimensional models of personality disorder // Annu. Rev. Clin. Psychol. 2005. Vol. 1. No. 1. P. 355–380.; Trull T.J. Dimensional models of personality disorder: Coverage and cutoffs // Journal of Personality Disorders. 2005. Vol. 19. No. 3. P. 262–282.; Tanaka M. Beyond the boundaries: Transitioning from categorical to dimensional paradigms in mental health diagnostics // Advances in Clinical and Experimental Medicine. 2024. Vol. 33. No. 12. P. 1295–1301. https://doi.org/10.17219/acem/197425. EDN: LZQFUG; Jovev M., Jackson H.J. The relationship of borderline personality disorder, life events and functioning in an Australian psychiatric sample // Journal of personality disorders. 2006. Vol. 20. No. 3. P. 205–217.; Gluschkoff K., Jokela M., Rosenström T. General psychopathology factor and borderline personality disorder: Evidence for substantial overlap from two nationally representative surveys of US adults // Personality Disorders: Theory, Research, and Treatment. 2021. Vol. 12. No. 1. P. 86. https://doi.org/10.1037/per0000405. EDN: AVCJOA; Widiger T.A., Simonsen E. Alternative dimensional models of personality disorder: Finding a common ground // Journal of personality disorders. 2005. Vol. 19. No. 2. P. 110–130.; Widiger T.A. Personality disorders in the 21st century // Journal of Personality Disorders. 2000. Т. 14. No. 1. P. 3–16.; Widiger T.A., Livesley W.J., Clark L.A. An integrative dimensional classification of personality disorder // Psychological assessment. 2009. Vol. 21. No. 3. P. 243.; Lewis K.C., Ridenour J.M. Paranoid personality disorder // Encyclopedia of personality and individual differences. Springer, Cham, 2020. P. 3413–3421.; Shedler J. et al. Personality disorders in DSM-5 // American Journal of Psychiatry. 2010. Vol. 167. No. 9. P. 1026–1028.; Clark L.A., Livesley W.J., Morey L. Special feature: Personality disorder assessment: The challenge of construct validity // Journal of Personality Disorders. 1997. Vol. 11. No. 3. P. 205–231.; Livesley W.J., Dimaggio G., Clarkin J.F. (ed.). Integrated treatment for personality disorder: A modular approach. Guilford Publications, 2015.; Monaghan C., Bizumic B. Dimensional models of personality disorders: Challenges and opportunities // Frontiers in psychiatry. 2023. Vol. 14. P. 1098452. https://doi.org/10.3389/fpsyt.2023.1098452. EDN: JUZZTZ; Bach B., Tracy M. Clinical utility of the alternative model of personality disorders: A 10th year anniversary review // Personality Disorders: Theory, Research, and Treatment. 2022. Vol. 13. No. 4. P. 369. https://doi.org/10.1037/per0000527. EDN: OFSBLJ; Wright A.G.C. Qualitative and quantitative distinctions in personality disorder // Personality Assessment in the DSM-5. 2014. P. 115–124.; Morey L.C. et al. Criterion A: Level of personality functioning in the alternative DSM-5 model for personality disorders // Personality Disorders: Theory, Research, and Treatment. 2022. Vol. 13. No. 4. P. 305. https://doi.org/10.1037/per0000551. EDN: TUKDLE; Bornstein R.F., Natoli A.P. Clinical utility of categorical and dimensional perspectives on personality pathology: A meta-analytic review // Personality Disorders: Theory, Research, and Treatment. 2019. Vol. 10. No. 6. P. 479.; Widiger T.A. et al. Personality disorder research agenda for the DSM-V // Journal of personality disorders. 2005. Vol. 19. No. 3. P. 315–338. https://doi.org/10.1521/pedi.2005.19.3.315. EDN: XPZLYV; Hörz-Sagstetter S., Ohse L., Kampe L. Three dimensional approaches to personality disorders: A review on personality functioning, personality structure, and personality organization // Current psychiatry reports 2021 Vol. 23. P. 1–16.; Morey L.C. et al. Personality disorders in DSM-5: Emerging research on the alternative model // Current psychiatry reports. 2015. Vol. 17. P. 1–9. https://doi.org/10.1007/s11920-015-0558-0. EDN: YWFTFJ; Sharp C., Miller J. D. Ten-year retrospective on the DSM-5 alternative model of personality disorder: Seeing the forest for the trees // Personality Disorders: Theory, Research, and Treatment. 2022. Vol. 13. No. 4. P. 301. https://doi.org/10.1037/per0000595. EDN: PFJOFC; Yang M., Coid J., Tyrer P. Personality pathology recorded by severity: national survey // The British Journal of Psychiatry. 2010. Vol. 197. No. 3. P. 193–199.; Zanarini M. C. et al. The collaborative longitudinal personality disorders study: Reliability of axis I and II diagnoses // Journal of personality disorders. 2000. Vol. 14. No. 4. P. 291–299.; Zimmerman M., Rothschild L., Chelminski I. The prevalence of DSM-IV personality disorders in psychiatric outpatients // American journal of psychiatry. 2005. Vol. 162. No. 10. P. 1911–1918.; Morse J.Q., Pilkonis P.A. Screening for personality disorders // Journal of personality disorders. 2007. Vol. 21. No. 2. P. 179–198.; Keefe J.R. et al. What is the effect on comorbid personality disorder of brief panic-focused psychotherapy in patients with panic disorder? //Depression and Anxiety. 2018. Vol. 35. No. 3. P. 239–247.; Zilcha-Mano S. et al. Are there subtypes of panic disorder? An interpersonal perspective // Journal of Consulting and Clinical Psychology. 2015. Vol. 83. No. 5. P. 938.; Becker D.F. et al. Diagnostic efficiency of borderline personality disorder criteria in hospitalized adolescents: comparison with hospitalized adults // American Journal of Psychiatry. 2002. Vol. 159. No. 12. P. 2042–2047. EDN: GRWIUV; Hyler S.E. et al. Diagnosis of DSM-III-R personality disorders by two structured interviews: patterns of comorbidity // American Journal of Psychiatry. 1992. Vol. 149. No. 2. P. 213–220.; Weertman A. et al. Short-interval test-retest interrater reliability of the Dutch version of the Structured Clinical Interview for DSM-IV personality disorders (SCID-II) // Journal of Personality disorders. 2003. Vol. 17. No. 6. P. 562–567.; Allen L.B. et al. Cognitive-behavior therapy (CBT) for panic disorder: Relationship of anxiety and depression comorbidity with treatment outcome //Journal of Psychopathology and Behavioral Assessment. 2010. Vol. 32. P. 185–192. https://doi.org/10.1007/s10862-009-9151-3. EDN: LMXWCI; Bastiaansen L. et al. The twofold diagnosis of personality disorder: How do personality dysfunction and pathological traits increment each other at successive levels of the trait hierarchy? // Personality Disorders: Theory, Research, and Treatment. 2016. Vol. 7. No. 3. P. 280.; Arnocky S. Self-perceived mate value, facial attractiveness, and mate preferences: Do desirable men want it all? // Evolutionary Psychology. 2018. Vol. 16. No. 1. P. 1474704918763271.; Livesley W.J., Jackson D.N., Schroeder M.L. A study of the factorial structure of personality pathology // Journal of Personality Disorders. 1989. Vol. 3. No. 4. P. 292–306.; Wyssen A. et al. Comparing the new concept of impairment in personality functioning with borderline personality disorder: differential psychosocial and psychopathological correlates in a clinical adolescent sample // European child & adolescent psychiatry. 2025. Vol. 34. No. 3. P. 1183–1193.; Herpertz S.C. et al. The challenge of transforming the diagnostic system of personality disorders // Journal of personality disorders. 2017. Vol. 31. No. 5. P. 577–589.; Skodol A.E. et al. The ironic fate of the personality disorders in DSM-5 // Personality Disorders: Theory, Research, and Treatment. 2013. Vol. 4. No. 4. P. 342.; Perea H., Malalagama A., Perera S. The puzzling symptom of paranoia // Sri Lanka Journal of Psychiatry. 2010. Vol. 1. No. 2.; Skodol A.E. et al. Personality disorder types proposed for DSM-5 // Journal of personality disorders. 2011. Vol. 25. No. 2. P. 136–169.; Trull T.J. Dimensional models of personality disorder // Current Opinion in Psychiatry. 2000. Vol. 13. No. 2. P. 179–184.; Fossati A. et al. A latent structure analysis of Diagnostic and Statistical Manual of Mental Disorders, narcissistic personality disorder criteria // Comprehensive Psychiatry. 2005. Vol. 46. No. 5. P. 361–367.; Tromp N.B., Koot H.M. Dimensions of personality pathology in adolescents: Psychometric properties of the DAPP-BQ-A // Journal of personality disorders. 2008. Vol. 22. No. 6. P. 623–638.; Gutiérrez F. et al. Severity in the ICD-11 personality disorder model: Evaluation in a Spanish mixed sample // Frontiers in Psychiatry. 2023. Vol. 13. P. 1015489.; Hengartner M.P., Lehmann S.N. Why psychiatric research must abandon traditional diagnostic classification and adopt a fully dimensional scope: Two solutions to a persistent problem // Frontiers in psychiatry. 2017. Vol. 8. P. 101.; Luyten P., Fonagy P. Integrating and differentiating personality and psychopathology: A psychodynamic perspective // Journal of Personality. 2022. Vol. 90. No. 1. P. 75–88. https://doi.org/10.1111/jopy.12656. EDN: CJKYWR; Furnham A. et al. A review of the measures designed to assess DSM-5 personality disorders // Psychology. 2014. Vol. 5. No. 14. P. 1646.; Hopwood C.J., Morey L.C., Markon K.E. What is a psychopathology dimension? // Clinical psychology review. 2023. Vol. 106. P. 102356. https://doi.org/10.1016/j.cpr.2023.102356. EDN: MSQRXK; Pincus A.L., Cain N.M., Halberstadt A.L. Importance of self and other in defining personality pathology // Psychopathology. 2020. Vol. 53. No. 3–4. P. 133–140. https://doi.org/10.1159/000506313. EDN: AAJCHO; Oldham J.M. DSM models of personality disorders // Current opinion in psychology. 2018. Vol. 21. P. 86–88.; Aluja A., Blanch A., Balada F. Normal personality versus pathological personality: Dimensional and predictive study // Personality and Mental Health. 2013. Vol. 7. No. 4. P. 288–297.; Thomas K.M. et al. The convergent structure of DSM-5 personality trait facets and five-factor model trait domains // Assessment. 2013. Vol. 20. No. 3. P. 308–311.; Maffly-Kipp J., Morey L.C. Comparing the DSM-5 categorical model of personality disorders and the alternative model of personality disorders regarding clinician judgments of risk and outcome // Personality Disorders: Theory, Research, and Treatment. 2024. Vol. 15. No. 5. P. 315.; Paladin L. Classification of personality disorders: categorical vs dimensional approach: diss.-University of Split. Faculty of Humanities and Social Sciences, 2024.; Krueger R.F. et al. DSM-5 and the path toward empirically based and clinically useful conceptualization of personality and psychopathology // Clinical Psychology: Science and Practice. 2014. Vol. 21. No. 3. P. 245.; Roche M.J. Examining the alternative model for personality disorder in daily life: Evidence for incremental validity // Personality Disorders: Theory, Research, and Treatment. 2018. Vol. 9. No. 6. P. 574.; Rodriguez-Seijas C. et al. Diversity and the hierarchical taxonomy of psychopathology (HiTOP) // Nature Reviews Psychology. 2023. Vol. 2. No. 8. P. 483–495. https://doi.org/10.1038/s44159-023-00200-0. EDN: PBUGJK; Ringwald W.R., Forbes M.K., Wright A.G. C. Meta-analysis of structural evidence for the Hierarchical Taxonomy of Psychopathology (HiTOP) model // Psychological medicine. 2023. Vol. 53. No. 2. P. 533–546.; d'Huart D. et al. The stability of personality disorders and personality disorder criteria: A systematic review and meta-analysis // Clinical psychology review. 2023. Vol. 102. P. 102284. https://doi.org/10.1016/j.cpr.2023.102284. EDN: EBOZUP; Sharp C., Miller J.D. Ten-year retrospective on the DSM-5 alternative model of personality disorder: Seeing the forest for the trees // Personality Disorders: Theory, Research, and Treatment. 2022. Vol. 13. No. 4. P. 301. https://doi.org/10.1037/per0000595. EDN: PFJOFC; Hopwood C.J., Pincus A.L., Wright A.G.C. The interpersonal situation: Integrating personality assessment, case formulation, and intervention // Using basic personality research to inform personality pathology. 2019. P. 94–121.; Johnson J.G. et al. Childhood verbal abuse and risk for personality disorders during adolescence and early adulthood // Comprehensive psychiatry. 2001. Vol. 42. No. 1. P. 16–23.; Sharp C., Fonagy P. Practitioner Review: Borderline personality disorder in adolescence-recent conceptualization, intervention, and implications for clinical practice // Journal of Child Psychology and Psychiatry. 2015. Vol. 56. No. 12. P. 1266–1288.; Chanen A.M. et al. Diagnosis and treatment of borderline personality disorder in young people // Current psychiatry reports. 2020. Vol. 22. P. 1–8. https://doi.org/10.1007/s11920-020-01144-5. EDN: ZKPYWZ; Loewald H.W. Ego and reality // The International Journal of Psycho-Analysis. 1951. Vol. 32. P. 10.; Roberts B.W., DelVecchio W.F. The rank-order consistency of personality traits from childhood to old age: a quantitative review of longitudinal studies // Psychological bulletin. 2000. Vol. 126. No. 1. P. 3. https://doi.org/10.1037/0033-2909.126.1.3. EDN: LNNMAF; Bleidorn W. et al. Personality trait stability and change // Personality Science. 2021. Vol. 2. No. 1. P. e6009.; Wright A.G.C. et al. Longitudinal validation of general and specific structural features of personality pathology // Journal of abnormal psychology. 2016. Vol. 125. No. 8. P. 1120.; Zanarini M.C. et al. The longitudinal course of borderline psychopathology: 6-year prospective follow-up of the phenomenology of borderline personality disorder // American Journal of Psychiatry. 2003. Vol. 160. No. 2. P. 274–283. EDN: GKHPHJ; Klimstra T.A., McLean K.C. Reconsidering normative interpretations in personality research // European Journal of Personality. 2025. Vol. 39. No. 1. P. 122–134.; Álvarez-Tomás I. et al. Long-term clinical and functional course of borderline personality disorder: A meta-analysis of prospective studies // European Psychiatry. 2019. Vol. 56. No. 1. P. 75–83.; Stein K.F. Affect instability in adults with a borderline personality disorder // Archives of psychiatric nursing. 1996. Vol. 10. No. 1. P. 32–40.; Day N.J.S., Townsend M.L., Grenyer B.F.S. Living with pathological narcissism: a qualitative study // Borderline Personality Disorder and Emotion Dysregulation. 2020. Vol. 7. P. 1–14. https://doi.org/10.1186/s40479-020-00132-8. EDN: JYXCTH; Di Sarno M. et al. Shame behind the corner? A daily diary investigation of pathological narcissism //Journal of research in personality. 2020. Vol. 85. P. 103924. https://doi.org/10.1016/j.jrp.2020.103924. EDN: KKWDDJ; Beck E.D., Jackson J.J. Consistency and change in idiographic personality: A longitudinal ESM network study // Journal of Personality and Social Psychology. 2020. Vol. 118. No. 5. P. 1080. https://doi.org/10.1037/pspp0000249. EDN: MJXQHY; Hopwood C.J. Interpersonal dynamics in personality and personality disorders // European Journal of Personality. 2018. Vol. 32. No. 5. P. 499–524.; Mulder R. T. ICD-11 personality disorders: utility and implications of the new model // Frontiers in psychiatry. 2021. Vol. 12. P. 655548. https://doi.org/10.3389/fpsyt.2021.655548. EDN: ROUKOQ; Gunderson J.G. et al. The Collaborative Longitudinal Personality Disorders Study: development, aims, design, and sample characteristics //Journal of personality disorders. 2000. Vol. 14. No. 4. P. 300–315.; Costa P.T., McCrae R.R. Concurrent validation after 20 years: The implications of personality stability for its assessment // Advances in personality assessment. Routledge. 2013. P. 31–54.; Blonigen D.M. et al. Stability and change in personality traits from late adolescence to early adulthood: A longitudinal twin study // Journal of personality. 2008. Vol. 76. No. 2. P. 229–266.; Ringwald W.R. et al. Dynamic features of affect and interpersonal behavior in relation to general and specific personality pathology // Personality Disorders: Theory, Research, and Treatment. 2021. Vol. 12. No. 4. P. 365. https://doi.org/10.1037/per0000469. EDN: NOSGVA; Wright A.G. C. et al. An interpersonal analysis of pathological personality traits in DSM-5 // Assessment. 2012. Vol. 19. No. 3. P. 263–275.; Conway C.C. et al. Borderline personality disorder is equally trait-like and state-like over ten years in adult psychiatric patients // Journal of abnormal psychology. 2018. Vol. 127. No. 6. P. 590.; Sharp C. et al. The structure of personality pathology: Both general («g’) and specific («s’) factors? // Journal of abnormal psychology. 2015. Vol. 124. No. 2. P. 387.; Kotov R., Krueger R.F., Watson D. etc. The Hierarchical Taxonomy of Psychopathology (HiTOP): A Quantitative Nosology Based on Consensus of Evidence // Annual Review of Clinical Psychology. 2021 Vol. 17 (1). P. 83–108. DOI:10.1146/annurev-clinpsy-081219–093304. EDN: IHPPDQ
-
5
Authors: et al.
Source: Obstetrics, Gynecology and Reproduction; Vol 19, No 1 (2025); 97-109 ; Акушерство, Гинекология и Репродукция; Vol 19, No 1 (2025); 97-109 ; 2500-3194 ; 2313-7347
Subject Terms: COVID-19 вакцинация, VITТ, heparin-induced thrombocytopenia, HIT, thrombosis, anti-platelet factor 4 antibodies, PF4, immune complexes, coagulopathy, alternative anticoagulants, intravenous immunoglobulins, diagnostic criteria, COVID-19 vaccination, ВИТТ, гепарин-индуцированная тромбоцитопения, ГИТ, тромбоз, антитела против фактора 4 тромбоцитов, иммунные комплексы, коагулопатия, альтернативные антикоагулянты, внутривенные иммуноглобулины, диагностические критерии
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2347/1301; Weismann R.E., Tobin R.W. Arterial embolism occurring during systemic heparin therapy. AMA Arch Surg. 1958;76(2):219–25. https://doi.org/10.1001/archsurg.1958.01280200041005.; May J., Cuker A. Practical guide to the diagnosis and management of heparin-induced thrombocytopenia. Hematology Am Soc Hematol Educ Program. 2024;2024(1):388–95. https://doi.org/10.1182/hematology.2024000566.; Dhakal B., Kreuziger L.B., Rein L. et al. Disease burden, complication rates, and health-care costs of heparin-induced thrombocytopenia in the USA: a population-based study. Lancet Haematol. 2018;5(5):e220–e231. https://doi.org/10.1016/S2352-3026(18)30046-2.; Greinacher A., Farner B., Kroll H. et al. Clinical features of heparin-induced thrombocytopenia including risk factors for thrombosis. A retrospective analysis of 408 patients. Thromb Haemost. 2005;94(1):132–5. https://doi.org/10.1160/TH04-12-0825.; Warkentin T.E. New approaches to the diagnosis of heparin-induced thrombocytopenia. Chest. 2005;127(2 Suppl):35S–45S. https://doi.org/10.1378/chest.127.2_suppl.35S.; Greinacher A., Thiele T., Warkentin T.E. et al. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 2021;384(22):2092–101. https://doi.org/10.1056/NEJMoa2104840.; Scully M., Singh D., Lown R. et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384(23):2202–11. https://doi.org/10.1056/NEJMoa2105385.; Schultz N.H., Sørvoll I.H., Michelsen A.E. et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384(22):2124–30. https://doi.org/10.1056/NEJMoa2104882.; Bhuyan P., Medin J., da Silva H.G. et al. Very rare thrombosis with thrombocytopenia after second AZD1222 dose: a global safety database analysis. Lancet. 2021;398(10300):577–8. https://doi.org/10.1016/S0140-6736(21)01693-7.; See I., Su J.R., Lale A. et al. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26.COV2.S vaccination, March 2 to April 21, 2021. JAMA. 2021;325(24):2448–56. https://doi.org/10.1001/jama.2021.7517.; Herrera-Comoglio R., Lane S. Vaccine-induced immune thrombocytopenia and thrombosis after the Sputnik V vaccine. N Engl J Med. 2022;387(15):1431–2. https://doi.org/10.1056/NEJMc2210813.; Martel N., Lee J., Wells P.S. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood. 2005;106(8):2710–5. https://doi.org/10.1182/blood-2005-04-1546.; Warkentin T.E., Levine M.N., Hirsh J. et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med. 1995;332(20):1330–5. https://doi.org/10.1056/NEJM199505183322003.; Othman M., Baker A.T., Gupalo E. et al. To clot or not to clot? Ad is the question – insights on mechanisms related to vaccine-induced thrombotic thrombocytopenia. J Thromb Haemost. 2021;19(11):2845–56. https://doi.org/10.1111/jth.15485.; Pavord S., Scully M., Hunt B.J. et al. Clinical features of vaccine-induced immune thrombocytopenia and thrombosis. N Engl J Med. 2021;385(18):1680–9. https://doi.org/10.1056/NEJMoa2109908.; Krzywicka K., van de Munckhof A., Zimmermann J. et al. Cerebral venous thrombosis due to vaccine-induced immune thrombotic thrombocytopenia after a second ChAdOx1 nCoV-19 dose. Blood. 2022;139(17):2720–4. https://doi.org/10.1182/blood.2021015329.; Favaloro E.J. Laboratory testing for suspected COVID-19 vaccine-induced (immune) thrombotic thrombocytopenia. Int J Lab Hematol. 2021;43(4):559–70. https://doi.org/10.1111/ijlh.13629.; Greinacher A., Langer F., Makris M. et al. Vaccine-induced immune thrombotic thrombocytopenia (VITT): Update on diagnosis and management considering different resources. J Thromb Haemost. 2022;20(1):149–56. https://doi.org/10.1111/jth.15572.; Kim A.Y., Woo W., Yon D.K. et al. Thrombosis patterns and clinical outcome of COVID-19 vaccine-induced immune thrombotic thrombocytopenia: a systematic review and meta-analysis. Int J Infect Dis. 2022;119:130–9. https://doi.org/10.1016/j.ijid.2022.03.034.; Arepally G.M. Heparin-induced thrombocytopenia. Blood. 2017;129(21):2864–72. https://doi.org/10.1182/blood-2016-11-709873.; Arepally G.M., Hursting M.J. Platelet factor 4/heparin antibody (IgG/M/A) in healthy subjects: a literature analysis of commercial immunoassay results. J Thromb Thrombolysis. 2008;26(1):55–61. https://doi.org/10.1007/s11239-008-0217-y.; Chan B.T., Bobos P., Odutayo A., Pai M. Meta-analysis of risk of vaccineinduced immune thrombotic thrombocytopenia following ChAdOx1-S recombinant vaccine. medRxiv. May 8, 2021. https://doi.org/10.1101/2021.05.04.21256613.; Klok F.A., Pai M., Huisman M.V, Makris M. Vaccine-induced immune thrombotic thrombocytopenia. Lancet Haematol. 2022;9(1):e73–e80. https://doi.org/10.1016/S2352-3026(21)00306-9.; Mingot-Castellano M.E., Butta N., Canaro M. et al. COVID-19 vaccines and autoimmune hematologic disorders. Vaccines. 2022;10(6):961. https://doi.org/10.3390/vaccines10060961.; Oliver S. Updates to the benefit/risk assessment for Janssen COVID-19 vaccines: Applying the Evidence to Recommendation Framework. ACIP Meeting, December 16, 2021. Available at: https://www.cdc.gov/vaccinesacip/meetings/downloads/slides-2021-12-16/04_covid_oliver_2021-12-16.pdf. [Accessed: 10.01.2025].; Greinacher A., Schönborn L., Siegerist F. et al. Pathogenesis of vaccineinduced immune thrombotic thrombocytopenia (VITT). Semin Hematol. 2022;59(2):97–107. https://doi.org/10.1053/j.seminhematol.2022.02.004.; Warkentin T.E. How I diagnose and manage HIT. Hematology Am Soc Hematol Educ Program. 2011;2011(1):143–9. https://doi.org/10.1182/asheducation-2011.1.143.; Marchetti M., Zermatten M.G., Calderara D.B. et al. Heparin-induced thrombocytopenia: a review of new concepts in pathogenesis, diagnosis, and management. J Clin Med. 2021;10(4):683. https://doi.org/10.3390/jcm10040683.; Greinacher A., Holtfreter B., Krauel K. et al. Association of natural antiplatelet factor 4/heparin antibodies with periodontal disease. Blood. 2011;118(5):1395–401. https://doi.org/10.1182/blood-2011-03-342857.; Hursting M.J., Pai P.J., McCracken J.E. et al. Platelet factor 4/heparin antibodies in blood bank donors. Am J Clin Pathol. 2010;134(5):774–80. https://doi.org/10.1309/AJCPG0MNR5NGKNFX.; Brandt S., Krauel K., Gottschalk K.E. et al. Characterisation of the conformational changes in platelet factor 4 induced by polyanions: towards in vitro prediction of antigenicity. Thromb Haemost. 2014;112(7):53–64. https://doi.org/10.1160/TH13-08-0634.; Napolitano A., Spiezia L., Biolo M. et al. Anti-platelet factor 4 antibodymediated disorders: an updated narrative review. Semin Thromb Hemost. 2025, Jan 30. https://doi.org/10.1055/a-2528-5425. Online ahead of print.; Warkentin T.E. Platelet-activating anti-PF4 disorders: an overview. Semin Hematol. 2022;59(2):59–71. https://doi.org/10.1053/j.seminhematol.2022.02.005.; Favaloro E.J., Pasalic L., Henry B., Lippi G. Laboratory testing for platelet factor 4 antibodies: differential utility for diagnosis/exclusion of heparin induced thrombocytopenia versus suspected vaccine induced thrombotic thrombocytopenia. Pathology. 2022;54(3):254–61. https://doi.org/10.1016/j.pathol.2021.10.008.; Warkentin T.E., Greinacher A. Laboratory testing for heparin-induced thrombocytopenia and vaccine-induced immune thrombotic thrombocytopenia antibodies: a narrative review. Semin Thromb Hemost. 2022;49(6):621–33. https://doi.org/10.1055/s-0042-1758818.; Samuelson Bannow B., Warad D.M., Jones C.G. et al. A prospective, blinded study of a PF4-dependent assay for HIT diagnosis. Blood. 2021;137(8):1082–9. https://doi.org/10.1182/blood.2020008195.; Husseinzadeh H.D., Gimotty P.A., Pishko A.M. et al. Diagnostic accuracy of IgG-specific versus polyspecific enzyme-linked immunoassays in heparininduced thrombocytopenia: a systematic review and meta-analysis. J Thromb Haemost. 2017;15(6):1203–12. https://doi.org/10.1111/jth.13692.; Handtke S., Wolff M., Zaninetti C. et al. A flow cytometric assay to detect platelet activating antibodies in VITT after ChAdOx1 nCov-19 vaccination. Blood. 2021;137(26):3656–9. https://doi.org/10.1182/blood.2021012064.; Huynh A., Kelton J.G., Arnold D.M. et al. Antibody epitopes in vaccineinduced immune thrombotic thrombocytopaenia. Nature. 2021;596(7873):565–9. https://doi.org/10.1038/s41586-021-03744-4.; Brown J.A., Aranda-Michel E., Kilic A. et al. Outcomes with heparininduced thrombocytopenia after cardiac surgery. Ann Thorac Surg. 2021;112(2):487–93. https://doi.org/10.1016/j.athoracsur.2020.10.046.; Warkentin T.E. Autoimmune heparin-induced thrombocytopenia. J Clin Med. 2023;12(21):6921. https://doi.org/10.3390/jcm12216921.; Greinacher A., Selleng K., Warkentin T.E. Autoimmune heparin-induced thrombocytopenia. J Thromb Haemost. 2017;15(11):2099–114. https://doi.org/10.1111/jth.13813.; Manji F., Warkentin T.E, Sheppard J.-A.I., Lee A. Fondaparinux crossreactivity in heparininduced thrombocytopenia successfully treated with high-dose intravenous immunoglobulin and rivaroxaban. Platelets. 2020;31(1):124–7. https://doi.org/10.1080/09537104.2019.1652263.; Warkentin T.E., Greinacher A. Spontaneous HIT syndrome: knee replacement, infection, and parallels with vaccine-induced immune thrombotic thrombocytopenia. Thromb Res. 2021;204:40–51. https://doi.org/10.1016/j.thromres.2021.05.018.; Warkentin T.E., Makris M., Jay R.M., Kelton J.G. A spontaneous prothrombotic disorder resembling heparin-induced thrombocytopenia. Am J Med. 208;121(7):632–6. https://doi.org/10.1016/j.amjmed.2008.03.012.; Krauel K., Pötschke C., Weber C. et al. Platelet factor 4 binds to bacteria, inducing antibodies cross-reacting with the major antigen in heparininduced thrombocytopenia. Blood. 2011;117(4):1370–8. https://doi.org/10.1182/blood-2010-08-301424.; Pai M. Epidemiology of VITT. Semin Hematol. 2022;59(2):72–5. https://doi.org/10.1053/j.seminhematol.2022.02.002.; Craven B., Lester W., Boyce S. et al. Natural history of PF4 antibodies in vaccine-induced immune thrombocytopenia and thrombosis. Blood. 2022;139(16):2553–60. https://doi.org/10.1182/blood.2021014684.; McGonagle D., De Marco G., Bridgewood C. Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection. J Autoimmun. 2021;121:102662. https://doi.org/10.1016/j.jaut.2021.102662.; Selvadurai M.V., Favaloro E.J., Chen V.M. Mechanisms of thrombosis in heparin-induced thrombocytopenia and vaccine-induced immune thrombotic thrombocytopenia. Semin Thromb Hemost. 2023;49(5):444–52. https://doi.org/10.1055/s-0043-1761269.; Greinacher A., Selleng K., Mayerle J. et al.; Immune-Response in COVID19 Vaccination Study Group. Anti-platelet factor 4 antibodies causing VITT do not cross-react with SARS-CoV-2 spike protein. Blood. 2021;138(14):1269–77. https://doi.org/10.1182/blood.2021012938.; Nand S., Wong W., Yuen B. et al. Heparin-induced thrombocytopenia with thrombosis: incidence, analysis of risk factors, and clinical outcomes in 108 consecutive patients treated at a single institution. Am J Hematol. 1997;56(1):12–6. https://doi.org/10.1002/(sici)1096-8652(199709)56:13.0.co;2-5.; Cuker A., Gimotty P.A., Crowther M.A., Warkentin T.E. Predictive value of the 4Ts scoring system for heparin-induced thrombocytopenia: a systematic review and meta-analysis. Blood. 2012;120(20):4160–7. https://doi.org/10.1182/blood-2012-07-443051.; May J., Westbrook B., Cuker A. Heparin-induced thrombocytopenia: an illustrated review. Res Pract Thromb Haemost. 2023;7(5):100283. https://doi.org/10.1016/j.rpth.2023.100283.; Rogers P., Walker I., Yeung J. et al; RADIANT Group. Thrombus distribution in vaccine-induced immune thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. Radiology. 2022; 305(3):590–6. https://doi.org/10.1148/radiol.220365.; Schönborn L., Pavord S., Chen V.M.Y. et al. Thrombosis with thrombocytopenia syndrome (TTS) and vaccine-induced immune thrombocytopenia and thrombosis (VITT): Brighton Collaboration case definitions and guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine. 2024;42(7):1799–811. https://doi.org/10.1016/j.vaccine.2024.01.045.; Cuker A., Arepally G.M., Chong B.H. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia. Blood Adv. 2018;2(22):3360–92. https://doi.org/10.1182/bloodadvances.2018024489.; Gruel Y., De Maistre E., Pouplard C. et al. Diagnosis and management of heparin-induced thrombocytopenia. Anaesth Crit Care Pain Med. 2020;39(2):291–310. https://doi.org/10.1016/j.accpm.2020.03.012.; Pavord S., Hunt B.J., Horner D. et al. Vaccine induced immune thrombocytopenia and thrombosis: summary of NICE guidance. BMJ. 2021;375:n2195. https://doi.org/10.1136/bmj.n2195.; Müller L., Dabbiru V.A.S., Schönborn L., Greinacher A. Therapeutic strategies in FcγIIA receptor-dependent thrombosis and thromboinflammation as seen in heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombocytopenia and thrombosis (VITT). Expert Opin Pharmacother. 2024;25(3):281–94. https://doi.org/10.1080/14656566.2024.2328241.; Farner B., Eichler P., Kroll H. et al. A comparison of danaparoid and lepirudin in heparin-induced thrombocytopenia. Thromb Haemost. 2001;85(6):950–7. https://doi.org/10.1055/s-0037-1615946.; Fathi M. Heparin-induced thrombocytopenia (HIT): identification and treatment pathways. Glob Cardiol Sci Pract. 2018;2018(2):15. https://doi.org/10.21542/gcsp.2018.15.; Nilius H., Kaufmann J., Cuker A. et al. Comparative effectiveness and safety of anticoagulants for the treatment of heparin-induced thrombocytopenia. Am J Hematol. 2021;96(7):805–15. https://doi.org/10.1002/ajh.26194.; Warkentin T.E., Kelton J.G. A 14-year study of heparin-induced thrombocytopenia. Am J Med. 1996;101(5):502–7. https://doi.org/10.1016/S0002-9343(96)00258-6.; Schulman S., Arnold D.M., Bradbury C.A. et al. 2023 ISTH update of the 2022 ISTH guidelines for antithrombotic treatment in COVID-19. J Thromb Haemost. 2024;22(6);1779–97. https://doi.org/10.1016/j.jtha.2024.02.011.; Warkentin T.E., Pai M., Linkins L.-A. Direct oral anticoagulants for treatment of HIT: update of Hamilton experience and literature review. Blood. 2017;130(9):1104–13. https://doi.org/10.1182/blood-201704-778993.; Salih F., Schönborn L., Kohler S. et al. Vaccine-induced thrombocytopenia with severe headache. N Engl J Med. 2021;385(22):2103–5. https://doi.org/10.1056/NEJMc2112974.; Kreimann M., Brandt S., Krauel K. et al. Binding of anti-platelet factor 4/ heparin antibodies depends on the thermodynamics of conformational changes in platelet factor 4. Blood. 2014;124(15):2442–9. https://doi.org/10.1182/blood-2014-03-559518.; Nguyen T.-H., Greinacher A., Delcea M. Quantitative description of thermodynamic and kinetic properties of the platelet factor 4/heparin bonds. Nanoscale. 2015;7(22):10130–9. https://doi.org/10.1039/C5NR02132D.; Savi P., Chong B.H., Greinacher A. et al. Effect of fondaparinux on platelet activation in the presence of heparin-dependent antibodies: a blinded comparative multicenter study with unfractionated heparin. Blood. 2005;105(1):139–44. https://doi.org/10.1182/blood-2004-052010.; Linkins L.-.A, Hu G., Warkentin T.E. Systematic review of fondaparinux for heparin-induced thrombocytopenia: when there are no randomized controlled trials. Res Pract Thromb Haemost. 2018;2(4):678–83. https://doi.org/10.1002/rth2.12145.; Guidance for clinical case management of thrombosis with thrombocytopenia syndrome (TTS) following vaccination to prevent coronavirus disease (COVID-19). Geneva: World Health Organization, 2023. Available at: https://www.who.int/publications/i/item/9789240061989. [Accessed: 10.01.2025].; https://www.gynecology.su/jour/article/view/2347
-
6
Source: University Therapeutic Journal, Vol 6, Iss 1 (2024)
Subject Terms: аутоиммунный гепатит, диагностические критерии, Medicine, дети, симптомы, клинический случай
-
7
Authors: Kopchak, O.O.
Source: INTERNATIONAL NEUROLOGICAL JOURNAL; № 6.92 (2017); 77-83
МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ; № 6.92 (2017); 77-83
МІЖНАРОДНИЙ НЕВРОЛОГІЧНИЙ ЖУРНАЛ; № 6.92 (2017); 77-83Subject Terms: reversible cerebral vasoconstriction syndrome, headache, diagnostic criteria, treatment, оборотний церебральний вазоконстрикторний синдром, головний біль, діагностичні критерії, лікування, обратимый церебральный вазоконстрикторный синдром, головная боль, диагностические критерии, лечение, 3. Good health
File Description: application/pdf
-
8
Authors: Himion, L.
Source: Здоров'я суспільства-Zdorov'a suspil'stva; Том 2, № 3-4 (2013); 91-105
Health of Society; Том 2, № 3-4 (2013); 91-105
Здоровье общества-Zdorov'a suspil'stva; Том 2, № 3-4 (2013); 91-105Subject Terms: acute rheumatic fever (ARF), diagnostic criteria for ARF, diagnosis of ARF, ARF prophylaxis, ARF treatment, острая ревматическая лихорадка (ОРЛ), диагностика ОРЛ, диагностические критерии ОРЛ, профилактика ОРЛ, лечение ОРЛ, гостра ревматична лихоманка (ГРЛ), діагностика ГРЛ, діагностичні критерії ГРЛ, профілактика ГРЛ, лікування ГРЛ, 3. Good health
File Description: application/pdf
-
9
Authors:
Source: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 3 No. 5 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 124-129 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 5 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 124-129 ; 2181-3469
Subject Terms: гестационный сахарный диабет, беременность, распространённость, осложнения, диабетическая фетопатия, диагностические критерии
File Description: application/pdf
-
10
Authors: et al.
Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 3 (2024); 94-100 ; Российский вестник перинатологии и педиатрии; Том 69, № 3 (2024); 94-100 ; 2500-2228 ; 1027-4065
Subject Terms: Ванкуверские диагностические критерии, juvenile psoriatic arthritis, psoriasis, Vancouver diagnostic criteria, ювенильный псориатический артрит, псориаз
File Description: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/2010/1500; Чебышева С.Н., Геппе Н.А., Жолобова Е.С., Алексанян К.В., Мелешкина А.В., Дагбаева Д.В. Клинические особенности псориатического артрита в детском возрасте. Доктор.Ру. 2020; 19(10): 22-26. DOI:10.31550/1727-2378-2020-19-10-22-26.; Gelfand J.M., Gladman D.D., Mease P.J., Smith N., Margolis D.J., Nijsten T. et al. Epidemiology of psoriatic arthritis in the population of the United States. J Am Acad Dermatol 2005; 53(4): 573. DOI:10.1016/j.jaad.2005.03.046; Prakken B.J., Martini A., Malattia C. Juvenile idiopathic arthritis: pathogenesis and clinical aspects. EULAR Textbook on Paediatric Rheumatology. Amsterdam; 2018: 24.; Beukelman T., Kimura Y., Ilowite N.T., Mieszkalski K., Natter M.D., Burrell G. et al. The new Childhood Arthritis and Rheumatology Research Alliance (CARRA) registry: design, rationale, and characteristics of patients enrolled in the first 12 months. Pediatr Rheumatol Online J 2017; 15(1): 30. DOI:10.1186/s12969-017-0160-6; Horneff G., Klein A., Oommen P. T., Hospach A., Foeldvari I., Feddersen I. et al. Update on malignancies in children with juvenile idiopathic arthritis in the German BIKER Registry. Clin Exp Rheumatol 2016; 34(6): 1113-1120.; Алексеева Е.И. Ювенильный идиопатический артрит: клиническая картина, диагностика, лечение. Вопросы современной педиатрии 2015; 14(1): 78-94. DOI:10.15690/vsp.v14i1.1266; Севостьянов В.К., Жолобова Е.С., Мелик-Гусейнов Д.В. Структура ювенильного идиопатического артрита по данным регистра детей с ревматическими заболеваниями в Москве. Рус мед журн Медицинское обозрение 2017; 1: 6-10.; Чебышева С.Н., Жолобова Е.С., Мелешкина А.В. Диагностика, клиника и терапия псориатического артрита у детей. Доктор.Ру. 2012; 9(77): 32-36.; Чебышева С.Н. Псориатический артрит. Руководство по детской ревматологии. Под ред. Н.А. Геппе, Н.С. Подчерняева, Г.А. Лыскина. Москва: ГЭОТАР-Медиа; 2011: 285-299.; Круглова Л.С., Бакулев А.Л., Коротаева Т.В., Лила А.М., Переверзева Н.О. Псориаз. Москва; ГЭОТАР-Медиа, 2022; 320.; Lambert J.R., Ansell B.M., Stephenson E., Wright V. Psoriatic arthritis in childhood. Clin Rheum Dis 1976; 2: 339-352.
-
11
Authors: et al.
Contributors: et al.
Source: Modern Rheumatology Journal; Том 18, № 3 (2024); 7-13 ; Современная ревматология; Том 18, № 3 (2024); 7-13 ; 2310-158X ; 1996-7012
Subject Terms: диагностические критерии, clinical picture, diagnosis, differential diagnosis, diagnostic criteria, клиническая картина, диагностика, дифференциальная диагностика
File Description: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1583/1466; Клинические рекомендации – Инфекционный эндокардит и инфекция внутрисердечных устройств – 2021-2022-2023 http://disuria.ru/_ld/12/1217_kr21I33I39MZ.pdf?ysclid=lu6xs6y5gr773038579; Тюрин ВП. Инфекционные эндокардиты. Москва: ГЭОТАР-Медиа; 2012. 368 с.; Шевченко ЮЛ. Инфекционный эндокардит. Руководство по кардиологии в четырех томах. Том 4: Заболевания сердечно-сосудистой системы (II) Москва: Практика; 2014. 976 c.; Ambrosioni J, Hernandez-Meneses M, Tellez A, et al. The Changing Epidemiology of Infective Endocarditis in the Twenty-First Century. Curr Infect Dis Rep. 2017 May; 19(5):21. doi:10.1007/s11908-017-0574-9.; Моисеев ВС, Кобалава ЖД, Писарюк АС и др. Инфекционный эндокардит: клиническая характеристика и исходы (7-летний опыт лечения и наблюдения в многопрофильной городской больнице). Кардиология. 2018;58(12):66-75.; Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015 Nov 21;36(44):3075-3128. doi:10.1093/eurheartj/ehv319; Николаевский ЕН. Инфекционный эндокардит как медико-социальная проблема современной России. Новая Наука: Стратегии и Векторы Развития. 2016; (6-2):26-9.; Delgado V, Ajmone Marsan N, de Waha S, et al. 2023 ESC Guidelines for the management of endocarditis. Eur Heart J. 2023 Oct 14;44(39):3948-4042. doi:10.1093/eurheartj/ehad193.; Munoz P, Kestler M, De Alarcon A, et al. Current Epidemiology and Outcome of Infective Endocarditis: A Multicenter, Prospective, Cohort Study. Medicine (Baltimore). 2015 Oct; 94(43): e1816. doi:10.1097/MD.0000000000001816; Белов БС, Тарасова ГМ. Инфекционный эндокардит: этиология, патогенез, клиническая картина (часть I). Современная ревматология. 2008;2(2):32-38. doi:10.14412/1996-7012-2008-470
-
12
Authors:
Source: Interactive science; № 9(64); 49-52
Интерактивная наука; № 9(64); 49-52Subject Terms: нарушение мышления, речевые маркеры шизотипического личностного расстройства, нарушение эмоций и поведения, шизотипическое расстройство, диагностические критерии, психологическое консультирование, анормальный перцептивный опыт, клиническая картина болезни, психиатрический статус личности
File Description: text/html
-
13
Authors:
Source: Energy saving. Power engineering. Energy audit.; No. 3-4(157-158) (2021): Energy saving. Power engineering. Energy audit; 20-33
Энергосбережение. Энергетика. Энергоаудит.; № 3-4(157-158) (2021): Енергозбереження. Енергетика. Енергоаудит.; 20-33
Загальнодержавний науково-виробничий та інформаційний журнал «Енергозбереження. Енергетика. Енергоаудит»; № 3-4(157-158) (2021): Енергозбереження. Енергетика. Енергоаудит.; 20-33Subject Terms: анализ растворенных в масле газов, dynamics of the defect development, достовірність діагностики, комбіновані дефекти, силові трансформатори, diagnostic reliability, 0211 other engineering and technologies, діагностичні критерії, динаміка розвитку дефекту, динамика развития дефекта, достоверность диагностики, аналіз розчинених у маслі газів, 02 engineering and technology, розряди і низькотемпературний перегрів, силовые трансформаторы, power transformers, разряды и низкотемпературный перегрев, diagnostic criteria, диагностические критерии, 0202 electrical engineering, electronic engineering, information engineering, комбинированные дефекты, combined defects, dissolved gas analysis, discharges and low-temperature overheating
File Description: application/pdf
-
14
Authors:
Source: Zdorovʹe Rebenka, Vol 14, Iss 4, Pp 250-255 (2019)
CHILD`S HEALTH; Том 14, № 4 (2019); 250-255
Здоровье ребенка-Zdorovʹe rebenka; Том 14, № 4 (2019); 250-255
Здоров'я дитини-Zdorovʹe rebenka; Том 14, № 4 (2019); 250-255Subject Terms: atopic dermatitis, diagnostic criteria, treatment, antihistamines, dimethindene maleate, infants, атопический дерматит, диагностические критерии, лечение, антигистаминные препараты, диметиндена малеат, дети раннего возраста, Pediatrics, RJ1-570, атопічний дерматит, діагностичні критерії, лікування, антигістамінні препарати, диметиндену малеат, діти раннього віку, 3. Good health
File Description: application/pdf
Access URL: http://childshealth.zaslavsky.com.ua/article/download/174039/174943
https://doaj.org/article/97360279e18948608bfbd71e5ce99d2d
http://childshealth.zaslavsky.com.ua/article/view/174039
http://childshealth.zaslavsky.com.ua/article/download/174039/174943
http://childshealth.zaslavsky.com.ua/article/view/174039 -
15
Authors: et al.
Source: Онкогематология, Vol 0, Iss 2, Pp 22-27 (2022)
Subject Terms: анапластическая крупноклеточная лимфома, лимфома ходжкина, диагностические критерии, иммунофенотипические особенности, клиническое течение, прогностические группы, Diseases of the blood and blood-forming organs, RC633-647.5
File Description: electronic resource
-
16
Source: Репродуктивное здоровье. Восточная Европа. :509-517
-
17
Authors:
Source: Medicine of Ukraine; № 3(239) (2020); 14-19
Лекарства Украины; № 3(239) (2020); 14-19
Ліки України; № 3(239) (2020); 14-19Subject Terms: 616.441-008.63, вузли щитоподібної залози, алгоритми діагностики та лікування, ультразвукові діагностичні критерії, узлы щитовидной железы, алгоритмы диагностики и лечения, ультразвуковые диагностические критерии, thyroid nodules, algorithms for diagnostics and treatment, ultrasound diagnostic criteria, 3. Good health
File Description: application/pdf
-
18
Authors: et al.
Source: Известия Томского политехнического университета
Subject Terms: фильтрационные потоки, well hydrodynamic study, нефтяные пласты, filtration flows, скважины, идентификация, adaptation, горизонтальные скважины, pressure buildup curve, oil reservoirs, diagnostic criteria, диагностические критерии, horizontal wells, identification, адаптация, гидродинамические исследования, кривые восстановления давления
File Description: application/pdf
Access URL: http://izvestiya.tpu.ru/archive/article/download/2504/2173
http://izvestiya-tpu.ru/archive/article/view/2504
http://izvestiya.tpu.ru/archive/article/view/2504
http://izvestiya-tpu.ru/archive/article/download/2504/2173
http://izvestiya.tpu.ru/archive/article/download/2504/2173
http://earchive.tpu.ru/handle/11683/57949 -
19
-
20
Authors: et al.
Contributors: et al.
Source: Current Pediatrics; Том 21, № 6S (2022); 548-557 ; Вопросы современной педиатрии; Том 21, № 6S (2022); 548-557 ; 1682-5535 ; 1682-5527
Subject Terms: диагностические критерии, juvenile idiopathic arthritis, arthropathy, diagnostic criteria, ювенильный идиопатический артрит, артропатия
File Description: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document
Relation: https://vsp.spr-journal.ru/jour/article/view/3097/1253; https://vsp.spr-journal.ru/jour/article/view/3097/1268; Michaud M, Belmatoug N, Catros F, et al. Mucopolysaccharidosis: A review. Rev Med Interne. 2020;41(3):180–188. doi: https://doi.org/10.1016/j.revmed.2019.11.010; Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50(Suppl 5):v4–v12. doi: https://doi.org/10.1093/rheumatology/ker394; Simonaro CM, D’Angelo M, He X, et al. Mechanism of glycosaminoglycan-mediated bone and joint disease: implications for the mucopolysaccharidoses and other connective tissue diseases. Am J Pathol. 2008;172(1):112–122. doi: https://doi.org/10.2353/ajpath.2008.070564; Beck M, Arn P, Giugliani R, et al. The natural history of MPS I: global perspectives from the MPS I Registry. Genet Med. 2014;16(10): 759–765. doi: https://doi.org/10.1038/gim.2014.25; Cimaz R, Coppa GV, Koné-Paut I, et al. Joint contractures in the absence of inflammation may indicate mucopolysaccharidosis. Pediatr Rheumatol Online J. 2009;7:18. doi: https://doi.org/10.1186/1546-0096-7-18; Petty RE, Southwood TR, Manners P, et al. International League of Associations for Rheumatology. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31(2):390–392.; Muenzer J, Wraith JE, Clarke LA. Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics. 2009;123(1): 19–29. doi: https://doi.org/10.1542/peds.2008-0416; Viskochil D, Muenzer J, Guffon N, et al. Carpal tunnel syndrome in mucopolysaccharidosis I: a registry-based cohort study. Dev Med Child Neurol. 2017;59(12):1269–1275. doi: https://doi.org/10.1111/dmcn.13545; Tylki-Szymańska A, De Meirleir L, Di Rocco M, et al. Easy-to-use algorithm would provide faster diagnoses for mucopolysaccharidosis type I and enable patients to receive earlier treatment. Acta Paediatr. 2018;107(8):1402–1408. doi: https://doi.org/10.1111/apa.14417. PMID: 29797470; Guffon N, Journeau P, Brassier A, et al. Growth impairment and limited range of joint motion in children should raise suspicion of an attenuated form of mucopolysaccharidosis: expert opinion. Eur J Pediatr. 2019;178(4):593–603. doi: https://doi.org/10.1007/s00431-019-03330-x; Rigoldi M, Verrecchia E, Manna R, Mascia MT. Clinical hints to diagnosis of attenuated forms of Mucopolysaccharidoses. Ital J Pediatr. 2018;44(Suppl 2):132. doi: https://doi.org/10.1186/s13052-018-0551-4; Clarke LA, Hollak CE. The clinical spectrum and pathophysiology of skeletal complications in lysosomal storage disorders. Best Pract Res Clin Endocrinol Metab. 2015;29(2):219–235. doi: https://doi.org/10.1016/j.beem.2014.08.010; Peck SH, Casal ML, Malhotra NR, et al. Pathogenesis and treatment of spine disease in the mucopolysaccharidoses. Mol Genet Metab. 2016;118(4):232–243. doi: https://doi.org/10.1016/j.ymgme.2016.06.002; Borgo A, Cossio A, Gallone D, et al. Orthopaedic challenges for mucopolysaccharidoses. Ital J Pediatr. 2018;44(Suppl 2):123. doi: https://doi.org/10.1186/s13052-018-0557-y; Baronio F, Zucchini S, Zulian F, et al. Proposal of an Algorithm to Early Detect Attenuated Type I Mucopolysaccharidosis (MPS Ia) among Children with Growth Abnormalities. Medicina (Kaunas). 2022;58(1):97. doi: https://doi.org/10.3390/medicina58010097; Foster HE, Kay LJ, Friswell M, et al. Musculoskeletal screening examination (pGALS) for school-age children based on the adult GALS screen. Arthritis Rheum. 2006;55(5):709–716. doi: https://doi.org/10.1002/art.22230; Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50(Suppl 5):v49–v59. doi: https://doi.org/10.1093/rheumatology/ker396; Al-Sannaa NA, Bay L, Barbouth DS, et al. Early treatment with laronidase improves clinical outcomes in patients with attenuated MPS I: a retrospective case series analysis of nine sibships. Orphanet J Rare Dis. 2015;10:131. doi: https://doi.org/10.1186/s13023-015-0344-4
Nájsť tento článok vo Web of Science