Výsledky vyhľadávania - "ГЕТЕРОГЕННОСТЬ"

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 14, № 4 (2025); 135-155 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 4 (2025); 135-155 ; 2587-9537 ; 2306-1278

    Popis súboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1737/1073; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1737/2191; Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20(3):197-210. doi:10.1038/s41569-022-00770-1.; Becker LM, Chen SH, Rodor J, de Rooij LPMH, Baker AH, Carmeliet P. Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res. 2023;119(1):6-27. doi:10.1093/cvr/cvac018.; Gomez-Salinero JM, Redmond D, Rafii S. Microenvironmental determinants of endothelial cell heterogeneity. Nat Rev Mol Cell Biol. 2025 Jan 28. doi:10.1038/s41580-024-00825-w. Online ahead of print.; Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-36. doi:10.1161/CIRCRESAHA.115.306301.; Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res. 2023;132(8):970-992. doi:10.1161/CIRCRESAHA.123.321752.; Liberale L, Montecucco F, Tardif JC, Libby P, Camici GG. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J. 2020;41(31):2974-2982. doi:10.1093/eurheartj/ehz961.; Shirinsky VP. Vascular Endothelium at the Molecular Level: From Fundamental Knowledge Toward Medical Implementation. Biomedicines. 2024;13(1):2. doi:10.3390/biomedicines13010002.; Southgate L, Machado RD, Gräf S, Morrell NW. Molecular genetic framework underlying pulmonary arterial hypertension. Nat Rev Cardiol. 2020;17(2):85-95. doi:10.1038/s41569-019-0242-x.; Kavurma MM, Bursill C, Stanley CP, Passam F, Cartland SP, Patel S, Loa J, Figtree GA, Golledge J, Aitken S, Robinson DA. Endothelial cell dysfunction: Implications for the pathogenesis of peripheral artery disease. Front Cardiovasc Med. 2022;9:1054576. doi:10.3389/fcvm.2022.1054576.; Wolberg AS, Rosendaal FR, Weitz JI, Jaffer IH, Agnelli G, Baglin T, Mackman N. Venous thrombosis. Nat Rev Dis Primers. 2015;1:15006. doi:10.1038/nrdp.2015.6.; Goody PR, Hosen MR, Christmann D, Niepmann ST, Zietzer A, Adam M, Bönner F, Zimmer S, Nickenig G, Jansen F. Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets. Arterioscler Thromb Vasc Biol. 2020;40(4):885-900. doi:10.1161/ATVBAHA.119.313067.; Gu SX, Tyagi T, Jain K, Gu VW, Lee SH, Hwa JM, Kwan JM, Krause DS, Lee AI, Halene S, Martin KA, Chun HJ, Hwa J. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol. 2021;18(3):194-209. doi:10.1038/s41569-020-00469-1.; Gao Y, Galis ZS. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol. 2021;41(1):179-185. doi:10.1161/ATVBAHA.120.314346.; Feng J, Yano K, Monahan-Earley R, Morgan ES, Dvorak AM, Sellke FW, Aird WC. Vascular bed-specific endothelium-dependent vasomomotor relaxation in the hagfish, Myxine glutinosa. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R894-900. doi:10.1152/ajpregu.00080.2007.; Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY, Gu M, Zhou B, Feinstein JA, Krasnow MA, Metzger RJ. Capillary cell-type specialization in the alveolus. Nature. 2020;586(7831):785-789. doi:10.1038/s41586-020-2822-7.; Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med. 2012;2(1):a006429. doi:10.1101/cshperspect.a006429.; Perepletchikova D, Malashicheva A. Communication between endothelial cells and osteoblasts in regulation of bone homeostasis: Notch players. Stem Cell Res Ther. 2025;16(1):56. doi:10.1186/s13287-025-04176-x.; Melkumyants A, Buryachkovskaya L, Lomakin N, Antonova O, Docenko J, Ermishkin V, Serebruany V. Effect of Sulodexide on Circulating Blood Cells in Patients with Mild COVID-19. J Clin Med. 2022;11(7):1995. doi:10.3390/jcm11071995.; Chumakova SP, Urazova OI, Shipulin VM, Andreev SL, Denisenko OA, Gladkovskaya MV, Litvinova LS, Bubenchikov MA. Role of Angiopoietic Coronary Endothelial Dysfunction in the Pathogenesis of Ischemic Cardiomyopathy. Biomedicines. 2023;11(7):1950. doi:10.3390/biomedicines11071950.; Osipova ED, Semyachkina-Glushkovskaya OV, Morgun AV, Pisareva NV, Malinovskaya NA, Boitsova EB, Pozhilenkova EA, Belova OA, Salmin VV, Taranushenko TE, Noda M, Salmina AB. Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev Neurosci. 2018;29(5):567-591. doi:10.1515/revneuro-2017-0092.; Gomez-Salinero JM, Itkin T, Houghton S, Badwe C, Lin Y, Kalna V, Dufton N, Peghaire CR, Yokoyama M, Wingo M, Lu TM, Li G, Xiang JZ, Hsu YS, Redmond D, Schreiner R, Birdsey GM, Randi AM, Rafii S. Cooperative ETS Transcription Factors Enforce Adult Endothelial Cell Fate and Cardiovascular Homeostasis. Nat Cardiovasc Res. 2022;1:882-899. doi:10.1038/s44161-022-00128-3.; De Val S, Black BL. Transcriptional control of endothelial cell development. Dev Cell. 2009;16(2):180-95. doi:10.1016/j.devcel.2009.01.014.; Shah AV, Birdsey GM, Randi AM. Regulation of endothelial homeostasis, vascular development and angiogenesis by the transcription factor ERG. Vascul Pharmacol. 2016;86:3-13. doi:10.1016/j.vph.2016.05.003.; Neal A, Nornes S, Louphrasitthiphol P, Sacilotto N, Preston MD, Fleisinger L, Payne S, De Val S. ETS factors are required but not sufficient for specific patterns of enhancer activity in different endothelial subtypes. Dev Biol. 2021;473:1-14. doi:10.1016/j.ydbio.2021.01.002.; Kohli V, Schumacher JA, Desai SP, Rehn K, Sumanas S. Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev Cell. 2013;25(2):196-206. doi:10.1016/j.devcel.2013.03.017.; Red-Horse K, Siekmann AF. Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom-Up versus Top-Down. Bioessays. 2019;41(3):e1800198. doi:10.1002/bies.201800198.; Fang JS, Coon BG, Gillis N, Chen Z, Qiu J, Chittenden TW, Burt JM, Schwartz MA, Hirschi KK. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun. 2017;8(1):2149. doi:10.1038/s41467-017-01742-7.; Luo W, Garcia-Gonzalez I, Fernández-Chacón M, Casquero-Garcia V, Sanchez-Muñoz MS, Mühleder S, Garcia-Ortega L, Andrade J, Potente M, Benedito R. Arterialization requires the timely suppression of cell growth. Nature. 2021;589(7842):437-441. doi:10.1038/s41586-020-3018-x.; Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska K, Schnittler H, Siekmann AF. Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol. 2017;19(8):928-940. doi:10.1038/ncb3574.; Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF, Langen UH, Stehling M, Nagasawa T, Ferrara N, Borggrefe T, Adams RH. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol. 2017;19(8):915-927. doi:10.1038/ncb3555.; Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Yan Y, Yang X, Zhong TP, Pu WT, Zhou B. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science. 2014;345(6192):90-4. doi:10.1126/science.1251487.; Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR, Rattner A, Goff LA, Ecker JR, Nathans J. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. Elife. 2018;7:e36187. doi:10.7554/eLife.36187.; Chavkin NW, Genet G, Poulet M, Jeffery ED, Marziano C, Genet N, Vasavada H, Nelson EA, Acharya BR, Kour A, Aragon J, McDonnell SP, Huba M, Sheynkman GM, Walsh K, Hirschi KK. Endothelial cell cycle state determines propensity for arterial-venous fate. Nat Commun. 2022;13(1):5891. doi:10.1038/s41467-022-33324-7.; You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature. 2005;435(7038):98-104. doi:10.1038/nature03511.; Payne S, Gunadasa-Rohling M, Neal A, Redpath AN, Patel J, Chouliaras KM, Ratnayaka I, Smart N, De Val S. Regulatory pathways governing murine coronary vessel formation are dysregulated in the injured adult heart. Nat Commun. 2019;10(1):3276. doi:10.1038/s41467-019-10710-2.; Sissaoui S, Yu J, Yan A, Li R, Yukselen O, Kucukural A, Zhu LJ, Lawson ND. Genomic Characterization of Endothelial Enhancers Reveals a Multifunctional Role for NR2F2 in Regulation of Arteriovenous Gene Expression. Circ Res. 2020;126(7):875-888. doi:10.1161/CIRCRESAHA.119.316075.; Jin Y, Muhl L, Burmakin M, Wang Y, Duchez AC, Betsholtz C, Arthur HM, Jakobsson L. Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nat Cell Biol. 2017;19(6):639-652. doi:10.1038/ncb3534.; Deng H, Min E, Baeyens N, Coon BG, Hu R, Zhuang ZW, Chen M, Huang B, Afolabi T, Zarkada G, Acheampong A, McEntee K, Eichmann A, Liu F, Su B, Simons M, Schwartz MA. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Proc Natl Acad Sci U S A. 2021;118(37):e2105339118. doi:10.1073/pnas.2105339118.; Raftrey B, Williams M, Rios Coronado PE, Fan X, Chang AH, Zhao M, Roth R, Trimm E, Racelis R, D'Amato G, Phansalkar R, Nguyen A, Chai T, Gonzalez KM, Zhang Y, Ang LT, Loh KM, Bernstein D, Red-Horse K. Dach1 Extends Artery Networks and Protects Against Cardiac Injury. Circ Res. 2021;129(7):702-716. doi:10.1161/CIRCRESAHA.120.318271.; Franco CA, Jones ML, Bernabeu MO, Vion AC, Barbacena P, Fan J, Mathivet T, Fonseca CG, Ragab A, Yamaguchi TP, Coveney PV, Lang RA, Gerhardt H. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. Elife. 2016;5:e07727. doi:10.7554/eLife.07727.; Franco CA, Jones ML, Bernabeu MO, Geudens I, Mathivet T, Rosa A, Lopes FM, Lima AP, Ragab A, Collins RT, Phng LK, Coveney PV, Gerhardt H. Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol. 2015;13(4):e1002125. doi:10.1371/journal.pbio.1002125.; Augustin HG, Koh GY. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science. 2017;357(6353):eaal2379. doi:10.1126/science.aal2379.; Aizarani N, Saviano A, Sagar, Mailly L, Durand S, Herman JS, Pessaux P, Baumert TF, Grün D. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature. 2019;572(7768):199-204. doi:10.1038/s41586-019-1373-2.; Su T, Stanley G, Sinha R, D'Amato G, Das S, Rhee S, Chang AH, Poduri A, Raftrey B, Dinh TT, Roper WA, Li G, Quinn KE, Caron KM, Wu S, Miquerol L, Butcher EC, Weissman I, Quake S, Red-Horse K. Single-cell analysis of early progenitor cells that build coronary arteries. Nature. 2018;559(7714):356-362. doi:10.1038/s41586-018-0288-7.; Hou S, Li Z, Dong J, Gao Y, Chang Z, Ding X, Li S, Li Y, Zeng Y, Xin Q, Wang B, Ni Y, Ning X, Hu Y, Fan X, Hou Y, Li X, Wen L, Zhou B, Liu B, Tang F, Lan Y. Heterogeneity in endothelial cells and widespread venous arterialization during early vascular development in mammals. Cell Res. 2022;32(4):333-348. doi:10.1038/s41422-022-00615-z.; Garcia FJ, Sun N, Lee H, Godlewski B, Mathys H, Galani K, Zhou B, Jiang X, Ng AP, Mantero J, Tsai LH, Bennett DA, Sahin M, Kellis M, Heiman M. Single-cell dissection of the human brain vasculature. Nature. 2022;603(7903):893-899. doi:10.1038/s41586-022-04521-7.; Winkler EA, Kim CN, Ross JM, Garcia JH, Gil E, Oh I, Chen LQ, Wu D, Catapano JS, Raygor K, Narsinh K, Kim H, Weinsheimer S, Cooke DL, Walcott BP, Lawton MT, Gupta N, Zlokovic BV, Chang EF, Abla AA, Lim DA, Nowakowski TJ. A single-cell atlas of the normal and malformed human brain vasculature. Science. 2022;375(6584):eabi7377. doi:10.1126/science.abi7377.; Yang AC, Vest RT, Kern F, Lee DP, Agam M, Maat CA, Losada PM, Chen MB, Schaum N, Khoury N, Toland A, Calcuttawala K, Shin H, Pálovics R, Shin A, Wang EY, Luo J, Gate D, Schulz-Schaeffer WJ, Chu P, Siegenthaler JA, McNerney MW, Keller A, Wyss-Coray T. A human brain vascular atlas reveals diverse mediators of Alzheimer's risk. Nature. 2022;603(7903):885-892. doi:10.1038/s41586-021-04369-3.; Mäe MA, He L, Nordling S, Vazquez-Liebanas E, Nahar K, Jung B, Li X, Tan BC, Chin Foo J, Cazenave-Gassiot A, Wenk MR, Zarb Y, Lavina B, Quaggin SE, Jeansson M, Gu C, Silver DL, Vanlandewijck M, Butcher EC, Keller A, Betsholtz C. Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss. Circ Res. 2021;128(4):e46-e62. doi:10.1161/CIRCRESAHA.120.317473.; Kalucka J, de Rooij LPMH, Goveia J, Rohlenova K, Dumas SJ, Meta E, Conchinha NV, Taverna F, Teuwen LA, Veys K, García-Caballero M, Khan S, Geldhof V, Sokol L, Chen R, Treps L, Borri M, de Zeeuw P, Dubois C, Karakach TK, Falkenberg KD, Parys M, Yin X, Vinckier S, Du Y, Fenton RA, Schoonjans L, Dewerchin M, Eelen G, Thienpont B, Lin L, Bolund L, Li X, Luo Y, Carmeliet P. Single-Cell Transcriptome Atlas of Murine Endothelial Cells. Cell. 2020;180(4):764-779.e20. doi:10.1016/j.cell.2020.01.015.; Tabula Sapiens Consortium*; Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, Salzman J, Yosef N, Bulthaup B, Brown P, Harper W, Hemenez M, Ponnusamy R, Salehi A, Sanagavarapu BA, Spallino E, Aaron KA, Concepcion W, Gardner JM, Kelly B, Neidlinger N, Wang Z, Crasta S, Kolluru S, Morri M, Tan SY, Travaglini KJ, Xu C, Alcántara-Hernández M, Almanzar N, Antony J, Beyersdorf B, Burhan D, Calcuttawala K, Carter MM, Chan CKF, Chang CA, Chang S, Colville A, Culver RN, Cvijović I, D'Amato G, Ezran C, Galdos FX, Gillich A, Goodyer WR, Hang Y, Hayashi A, Houshdaran S, Huang X, Irwin JC, Jang S, Juanico JV, Kershner AM, Kim S, Kiss B, Kong W, Kumar ME, Kuo AH, Li B, Loeb GB, Lu WJ, Mantri S, Markovic M, McAlpine PL, de Morree A, Mrouj K, Mukherjee S, Muser T, Neuhöfer P, Nguyen TD, Perez K, Puluca N, Qi Z, Rao P, Raquer-McKay H, Schaum N, Scott B, Seddighzadeh B, Segal J, Sen S, Sikandar S, Spencer SP, Steffes LC, Subramaniam VR, Swarup A, Swift M, Van Treuren W, Trimm E, Veizades S, Vijayakumar S, Vo KC, Vorperian SK, Wang W, Weinstein HNW, Winkler J, Wu TTH, Xie J, Yung AR, Zhang Y, Detweiler AM, Mekonen H, Neff NF, Sit RV, Tan M, Yan J, Bean GR, Charu V, Forgó E, Martin BA, Ozawa MG. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science. 2022;376(6594):eabl4896. doi:10.1126/science.abl4896.; Orsenigo F, Conze LL, Jauhiainen S, Corada M, Lazzaroni F, Malinverno M, Sundell V, Cunha SI, Brännström J, Globisch MA, Maderna C, Lampugnani MG, Magnusson PU, Dejana E. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. Elife. 2020;9:e61413. doi:10.7554/eLife.61413.; Gómez-Salinero JM, Izzo F, Lin Y, Houghton S, Itkin T, Geng F, Bram Y, Adelson RP, Lu TM, Inghirami G, Xiang JZ, Lis R, Redmond D, Schreiner R, Rabbany SY, Landau DA, Schwartz RE, Rafii S. Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell. 2022;29(4):593-609.e7. doi:10.1016/j.stem.2022.03.002.; Barry DM, McMillan EA, Kunar B, Lis R, Zhang T, Lu T, Daniel E, Yokoyama M, Gomez-Salinero JM, Sureshbabu A, Cleaver O, Di Lorenzo A, Choi ME, Xiang J, Redmond D, Rabbany SY, Muthukumar T, Rafii S. Molecular determinants of nephron vascular specialization in the kidney. Nat Commun. 2019;10(1):5705. doi:10.1038/s41467-019-12872-5.; Ramiro-Pareta M, Müller-Sánchez C, Portella-Fortuny R, Soler-Botija C, Torres-Cano A, Esteve-Codina A, Bayés-Genís A, Reina M, Soriano FX, Montanez E, Martínez-Estrada OM. Endothelial deletion of Wt1 disrupts coronary angiogenesis and myocardium development. Development. 2023;150(6):dev201147. doi:10.1242/dev.201147.; Vila Ellis L, Cain MP, Hutchison V, Flodby P, Crandall ED, Borok Z, Zhou B, Ostrin EJ, Wythe JD, Chen J. Epithelial Vegfa Specifies a Distinct Endothelial Population in the Mouse Lung. Dev Cell. 2020;52(5):617-630.e6. doi:10.1016/j.devcel.2020.01.009.; He L, Vanlandewijck M, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Laviña B, Gouveia L, Sun Y, Raschperger E, Segerstolpe Å, Liu J, Gustafsson S, Räsänen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C. Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Sci Data. 2018;5:180160. doi:10.1038/sdata.2018.160.; Paik DT, Tian L, Williams IM, Rhee S, Zhang H, Liu C, Mishra R, Wu SM, Red-Horse K, Wu JC. Single-Cell RNA Sequencing Unveils Unique Transcriptomic Signatures of Organ-Specific Endothelial Cells. Circulation. 2020;142(19):1848-1862. doi:10.1161/CIRCULATIONAHA.119.041433.; Zhao L, Li Z, Vong JSL, Chen X, Lai HM, Yan LYC, Huang J, Sy SKH, Tian X, Huang Y, Chan HYE, So HC, Ng WL, Tang Y, Lin WJ, Mok VCT, Ko H. Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat Commun. 2020;11(1):4413. doi:10.1038/s41467-020-18249-3.; Tabula Muris Consortium; Overall coordination; Logistical coordination; Organ collection and processing; Library preparation and sequencing; Computational data analysis; Cell type annotation; Writing group; Supplemental text writing group; Principal investigators. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018;562(7727):367-372. doi:10.1038/s41586-018-0590-4.; Dumas SJ, Meta E, Borri M, Goveia J, Rohlenova K, Conchinha NV, Falkenberg K, Teuwen LA, de Rooij L, Kalucka J, Chen R, Khan S, Taverna F, Lu W, Parys M, De Legher C, Vinckier S, Karakach TK, Schoonjans L, Lin L, Bolund L, Dewerchin M, Eelen G, Rabelink TJ, Li X, Luo Y, Carmeliet P. Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation. J Am Soc Nephrol. 2020;31(1):118-138. doi:10.1681/ASN.2019080832.; Chen HI, Sharma B, Akerberg BN, Numi HJ, Kivelä R, Saharinen P, Aghajanian H, McKay AS, Bogard PE, Chang AH, Jacobs AH, Epstein JA, Stankunas K, Alitalo K, Red-Horse K. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development. 2014;141(23):4500-12. doi:10.1242/dev.113639.; Jiang Z, Lu Z, Kou S, Feng T, Wei Y, Gao Z, Deng D, Meng J, Lin CP, Zhou B, Zhang H. Overexpression of Kdr in adult endocardium induces endocardial neovascularization and improves heart function after myocardial infarction. Cell Res. 2021;31(4):485-487. doi:10.1038/s41422-020-00436-y.; Phansalkar R, Krieger J, Zhao M, Kolluru SS, Jones RC, Quake SR, Weissman I, Bernstein D, Winn VD, D'Amato G, Red-Horse K. Coronary blood vessels from distinct origins converge to equivalent states during mouse and human development. Elife. 2021;10:e70246. doi:10.7554/eLife.70246.; Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, Chang S, Conley SD, Mori Y, Seita J, Berry GJ, Shrager JB, Metzger RJ, Kuo CS, Neff N, Weissman IL, Quake SR, Krasnow MA. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature. 2020;587(7835):619-625. doi:10.1038/s41586-020-2922-4.; Hurskainen M, Mižíková I, Cook DP, Andersson N, Cyr-Depauw C, Lesage F, Helle E, Renesme L, Jankov RP, Heikinheimo M, Vanderhyden BC, Thébaud B. Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nat Commun. 2021;12(1):1565. doi:10.1038/s41467-021-21865-2.; Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C Jr, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat Commun. 2022;13(1):494. doi:10.1038/s41467-022-28062-9.; Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol. 2019;15(2):87-108. doi:10.1038/s41581-018-0098-z.; Chung JJ, Goldstein L, Chen YJ, Lee J, Webster JD, Roose-Girma M, Paudyal SC, Modrusan Z, Dey A, Shaw AS. Single-Cell Transcriptome Profiling of the Kidney Glomerulus Identifies Key Cell Types and Reactions to Injury. J Am Soc Nephrol. 2020;31(10):2341-2354. doi:10.1681/ASN.2020020220.; Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583(7817):590-595. doi:10.1038/s41586-020-2496-1.; Vidal R, Wagner JUG, Braeuning C, Fischer C, Patrick R, Tombor L, Muhly-Reinholz M, John D, Kliem M, Conrad T, Guimarães-Camboa N, Harvey R, Dimmeler S, Sauer S. Transcriptional heterogeneity of fibroblasts is a hallmark of the aging heart. JCI Insight. 2019;4(22):e131092. doi:10.1172/jci.insight.131092.; Huang X, Shen W, Veizades S, Liang G, Sayed N, Nguyen PK. Single-Cell Transcriptional Profiling Reveals Sex and Age Diversity of Gene Expression in Mouse Endothelial Cells. Front Genet. 2021;12:590377. doi:10.3389/fgene.2021.590377.; Reynolds G, Vegh P, Fletcher J, Poyner EFM, Stephenson E, Goh I, Botting RA, Huang N, Olabi B, Dubois A, Dixon D, Green K, Maunder D, Engelbert J, Efremova M, Polański K, Jardine L, Jones C, Ness T, Horsfall D, McGrath J, Carey C, Popescu DM, Webb S, Wang XN, Sayer B, Park JE, Negri VA, Belokhvostova D, Lynch MD, McDonald D, Filby A, Hagai T, Meyer KB, Husain A, Coxhead J, Vento-Tormo R, Behjati S, Lisgo S, Villani AC, Bacardit J, Jones PH, O'Toole EA, Ogg GS, Rajan N, Reynolds NJ, Teichmann SA, Watt FM, Haniffa M. Developmental cell programs are co-opted in inflammatory skin disease. Science. 2021;371(6527):eaba6500. doi:10.1126/science.aba6500.; Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, Chu SG, Raby BA, DeIuliis G, Januszyk M, Duan Q, Arnett HA, Siddiqui A, Washko GR, Homer R, Yan X, Rosas IO, Kaminski N. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1983. doi:10.1126/sciadv.aba1983.; Li Z, Solomonidis EG, Meloni M, Taylor RS, Duffin R, Dobie R, Magalhaes MS, Henderson BEP, Louwe PA, D'Amico G, Hodivala-Dilke KM, Shah AM, Mills NL, Simons BD, Gray GA, Henderson NC, Baker AH, Brittan M. Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. Eur Heart J. 2019;40(30):2507-2520. doi:10.1093/eurheartj/ehz305.; McDonald AI, Shirali AS, Aragón R, Ma F, Hernandez G, Vaughn DA, Mack JJ, Lim TY, Sunshine H, Zhao P, Kalinichenko V, Hai T, Pelegrini M, Ardehali R, Iruela-Arispe ML. Endothelial Regeneration of Large Vessels Is a Biphasic Process Driven by Local Cells with Distinct Proliferative Capacities. Cell Stem Cell. 2018;23(2):210-225.e6. doi:10.1016/j.stem.2018.07.011.; Wakabayashi T, Naito H, Suehiro JI, Lin Y, Kawaji H, Iba T, Kouno T, Ishikawa-Kato S, Furuno M, Takara K, Muramatsu F, Weizhen J, Kidoya H, Ishihara K, Hayashizaki Y, Nishida K, Yoder MC, Takakura N. CD157 Marks Tissue-Resident Endothelial Stem Cells with Homeostatic and Regenerative Properties. Cell Stem Cell. 2018;22(3):384-397.e6. doi:10.1016/j.stem.2018.01.010.; Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, Portman JR, Matchett KP, Brice M, Marwick JA, Taylor RS, Efremova M, Vento-Tormo R, Carragher NO, Kendall TJ, Fallowfield JA, Harrison EM, Mole DJ, Wigmore SJ, Newsome PN, Weston CJ, Iredale JP, Tacke F, Pollard JW, Ponting CP, Marioni JC, Teichmann SA, Henderson NC. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575(7783):512-518. doi:10.1038/s41586-019-1631-3.; Andueza A, Kumar S, Kim J, Kang DW, Mumme HL, Perez JI, Villa-Roel N, Jo H. Endothelial Reprogramming by Disturbed Flow Revealed by Single-Cell RNA and Chromatin Accessibility Study. Cell Rep. 2020;33(11):108491. doi:10.1016/j.celrep.2020.108491.; Depuydt MAC, Prange KHM, Slenders L, Örd T, Elbersen D, Boltjes A, de Jager SCA, Asselbergs FW, de Borst GJ, Aavik E, Lönnberg T, Lutgens E, Glass CK, den Ruijter HM, Kaikkonen MU, Bot I, Slütter B, van der Laan SW, Yla-Herttuala S, Mokry M, Kuiper J, de Winther MPJ, Pasterkamp G. Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics. Circ Res. 2020;127(11):1437-1455. doi:10.1161/CIRCRESAHA.120.316770.; Chen S, Zhu G, Yang Y, Wang F, Xiao YT, Zhang N, Bian X, Zhu Y, Yu Y, Liu F, Dong K, Mariscal J, Liu Y, Soares F, Loo Yau H, Zhang B, Chen W, Wang C, Chen D, Guo Q, Yi Z, Liu M, Fraser M, De Carvalho DD, Boutros PC, Di Vizio D, Jiang Z, van der Kwast T, Berlin A, Wu S, Wang J, He HH, Ren S. Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nat Cell Biol. 2021;23(1):87-98. doi:10.1038/s41556-020-00613-6.; Veerman K, Tardiveau C, Martins F, Coudert J, Girard JP. Single-Cell Analysis Reveals Heterogeneity of High Endothelial Venules and Different Regulation of Genes Controlling Lymphocyte Entry to Lymph Nodes. Cell Rep. 2019;26(11):3116-3131.e5. doi:10.1016/j.celrep.2019.02.042.; Lau SF, Cao H, Fu AKY, Ip NY. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer's disease. Proc Natl Acad Sci U S A. 2020;117(41):25800-25809. doi:10.1073/pnas.2008762117.; Rodor J, Chen SH, Scanlon JP, Monteiro JP, Caudrillier A, Sweta S, Stewart KR, Shmakova A, Dobie R, Henderson BEP, Stewart K, Hadoke PWF, Southwood M, Moore SD, Upton PD, Morrell NW, Li Z, Chan SY, Handen A, Lafyatis R, de Rooij LPMH, Henderson NC, Carmeliet P, Spiroski AM, Brittan M, Baker AH. Single-cell RNA sequencing profiling of mouse endothelial cells in response to pulmonary arterial hypertension. Cardiovasc Res. 2022;118(11):2519-2534. doi:10.1093/cvr/cvab296.; Apostolidis SA, Stifano G, Tabib T, Rice LM, Morse CM, Kahaleh B, Lafyatis R. Single Cell RNA Sequencing Identifies HSPG2 and APLNR as Markers of Endothelial Cell Injury in Systemic Sclerosis Skin. Front Immunol. 2018;9:2191. doi:10.3389/fimmu.2018.02191.; Su T, Yang Y, Lai S, Jeong J, Jung Y, McConnell M, Utsumi T, Iwakiri Y. Single-Cell Transcriptomics Reveals Zone-Specific Alterations of Liver Sinusoidal Endothelial Cells in Cirrhosis. Cell Mol Gastroenterol Hepatol. 2021;11(4):1139-1161. doi:10.1016/j.jcmgh.2020.12.007.; Goveia J, Rohlenova K, Taverna F, Treps L, Conradi LC, Pircher A, Geldhof V, de Rooij LPMH, Kalucka J, Sokol L, García-Caballero M, Zheng Y, Qian J, Teuwen LA, Khan S, Boeckx B, Wauters E, Decaluwé H, De Leyn P, Vansteenkiste J, Weynand B, Sagaert X, Verbeken E, Wolthuis A, Topal B, Everaerts W, Bohnenberger H, Emmert A, Panovska D, De Smet F, Staal FJT, Mclaughlin RJ, Impens F, Lagani V, Vinckier S, Mazzone M, Schoonjans L, Dewerchin M, Eelen G, Karakach TK, Yang H, Wang J, Bolund L, Lin L, Thienpont B, Li X, Lambrechts D, Luo Y, Carmeliet P. An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. Cancer Cell. 2020;37(1):21-36.e13. doi:10.1016/j.ccell.2019.12.001.; Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73(2):190-209. doi:10.1016/j.jacc.2018.09.089.; Xu K, Xie S, Huang Y, Zhou T, Liu M, Zhu P, Wang C, Shi J, Li F, Sellke FW, Dong N. Cell-Type Transcriptome Atlas of Human Aortic Valves Reveal Cell Heterogeneity and Endothelial to Mesenchymal Transition Involved in Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol. 2020;40(12):2910-2921. doi:10.1161/ATVBAHA.120.314789.; Chen PY, Qin L, Li G, Wang Z, Dahlman JE, Malagon-Lopez J, Gujja S, Cilfone NA, Kauffman KJ, Sun L, Sun H, Zhang X, Aryal B, Canfran-Duque A, Liu R, Kusters P, Sehgal A, Jiao Y, Anderson DG, Gulcher J, Fernandez-Hernando C, Lutgens E, Schwartz MA, Pober JS, Chittenden TW, Tellides G, Simons M. Endothelial TGF-beta signalling drives vascular inflammation and atherosclerosis. Nat Metab. 2019;1(9):912-926. doi:10.1038/s42255-019-0102-3.; Tombor LS, John D, Glaser SF, Luxán G, Forte E, Furtado M, Rosenthal N, Baumgarten N, Schulz MH, Wittig J, Rogg EM, Manavski Y, Fischer A, Muhly-Reinholz M, Klee K, Looso M, Selignow C, Acker T, Bibli SI, Fleming I, Patrick R, Harvey RP, Abplanalp WT, Dimmeler S. Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nat Commun. 2021;12(1):681. doi:10.1038/s41467-021-20905-1.; Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, Penfold ME, Shido K, Rabbany SY, Rafii S. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature. 2014;505(7481):97-102. doi:10.1038/nature12681.; Marcu R, Choi YJ, Xue J, Fortin CL, Wang Y, Nagao RJ, Xu J, MacDonald JW, Bammler TK, Murry CE, Muczynski K, Stevens KR, Himmelfarb J, Schwartz SM, Zheng Y. Human Organ-Specific Endothelial Cell Heterogeneity. iScience. 2018;4:20-35. doi:10.1016/j.isci.2018.05.003.; Tamargo IA, Baek KI, Kim Y, Park C, Jo H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol. 2023;20(11):738-753. doi:10.1038/s41569-023-00883-1.; Endesh N, Chuntharpursat-Bon E, Revill C, Yuldasheva NY, Futers TS, Parsonage G, Humphreys N, Adamson A, Morley LC, Cubbon RM, Prasad KR, Foster R, Lichtenstein L, Beech DJ. Independent endothelial functions of PIEZO1 and TRPV4 in hepatic portal vein and predominance of PIEZO1 in mechanical and osmotic stress. Liver Int. 2023;43(9):2026-2038. doi:10.1111/liv.15646.; Garcia-Polite F, Martorell J, Del Rey-Puech P, Melgar-Lesmes P, O'Brien CC, Roquer J, Ois A, Principe A, Edelman ER, Balcells M. Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J Cereb Blood Flow Metab. 2017;37(7):2614-2625. doi:10.1177/0271678X16672482.; Boyé K, Geraldo LH, Furtado J, Pibouin-Fragner L, Poulet M, Kim D, Nelson B, Xu Y, Jacob L, Maissa N, Agalliu D, Claesson-Welsh L, Ackerman SL, Eichmann A. Endothelial Unc5B controls blood-brain barrier integrity. Nat Commun. 2022;13(1):1169. doi:10.1038/s41467-022-28785-9; Shaheen MF, Joo DJ, Ross JJ, Anderson BD, Chen HS, Huebert RC, Li Y, Amiot B, Young A, Zlochiver V, Nelson E, Mounajjed T, Dietz AB, Michalak G, Steiner BG, Davidow DS, Paradise CR, van Wijnen AJ, Shah VH, Liu M, Nyberg SL. Sustained perfusion of revascularized bioengineered livers heterotopically transplanted into immunosuppressed pigs. Nat Biomed Eng. 2020;4(4):437-445. doi:10.1038/s41551-019-0460-x.; Witjas FMR, van den Berg BM, van den Berg CW, Engelse MA, Rabelink TJ. Concise Review: The Endothelial Cell Extracellular Matrix Regulates Tissue Homeostasis and Repair. Stem Cells Transl Med. 2019;8(4):375-382. doi:10.1002/sctm.18-0155.; Gomez-Salinero JM, Itkin T, Rafii S. Developmental angiocrine diversification of endothelial cells for organotypic regeneration. Dev Cell. 2021;56(22):3042-3051. doi:10.1016/j.devcel.2021.10.020.; Hu S, Liu S, Bian Y, Poddar M, Singh S, Cao C, McGaughey J, Bell A, Blazer LL, Adams JJ, Sidhu SS, Angers S, Monga SP. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep Med. 2022;3(10):100754. doi:10.1016/j.xcrm.2022.100754.; Kim B, Arany Z. Endothelial Lipid Metabolism. Cold Spring Harb Perspect Med. 2022;12(6):a041162. doi:10.1101/cshperspect.a041162.; Mehrotra D, Wu J, Papangeli I, Chun HJ. Endothelium as a gatekeeper of fatty acid transport. Trends Endocrinol Metab. 2014;25(2):99-106. doi:10.1016/j.tem.2013.11.001.; Goodpaster BH, Sparks LM. Metabolic Flexibility in Health and Disease. Cell Metab. 2017;25(5):1027-1036. doi:10.1016/j.cmet.2017.04.015.; Guilliams M, Bonnardel J, Haest B, Vanderborght B, Wagner C, Remmerie A, Bujko A, Martens L, Thoné T, Browaeys R, De Ponti FF, Vanneste B, Zwicker C, Svedberg FR, Vanhalewyn T, Gonçalves A, Lippens S, Devriendt B, Cox E, Ferrero G, Wittamer V, Willaert A, Kaptein SJF, Neyts J, Dallmeier K, Geldhof P, Casaert S, Deplancke B, Ten Dijke P, Hoorens A, Vanlander A, Berrevoet F, Van Nieuwenhove Y, Saeys Y, Saelens W, Van Vlierberghe H, Devisscher L, Scott CL. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell. 2022;185(2):379-396.e38. doi:10.1016/j.cell.2021.12.018.; Chapman FA, Nyimanu D, Maguire JJ, Davenport AP, Newby DE, Dhaun N. The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol. 2021;17(12):840-853. doi:10.1038/s41581-021-00461-z.; LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA, Peale F, Gurney A, Hillan KJ, Ferrara N. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature. 2001;412(6850):877-84. doi:10.1038/35091000.; Allen BL, Filla MS, Rapraeger AC. Role of heparan sulfate as a tissue-specific regulator of FGF-4 and FGF receptor recognition. J Cell Biol. 2001;155(5):845-58. doi:10.1083/jcb.200106075.; Wang Y, Cho C, Williams J, Smallwood PM, Zhang C, Junge HJ, Nathans J. Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood-brain barrier and blood-retina barrier development and maintenance. Proc Natl Acad Sci U S A. 2018;115(50):E11827-E11836. doi:10.1073/pnas.1813217115.; Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science. 2011;334(6063):1727-31. doi:10.1126/science.1206936.; Baehr A, Umansky KB, Bassat E, Jurisch V, Klett K, Bozoglu T, Hornaschewitz N, Solyanik O, Kain D, Ferraro B, Cohen-Rabi R, Krane M, Cyran C, Soehnlein O, Laugwitz KL, Hinkel R, Kupatt C, Tzahor E. Agrin Promotes Coordinated Therapeutic Processes Leading to Improved Cardiac Repair in Pigs. Circulation. 2020;142(9):868-881. doi:10.1161/CIRCULATIONAHA.119.045116.; Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, Crystal RG, Simons M, Sato TN, Worgall S, Shido K, Rabbany SY, Rafii S. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell. 2011;147(3):539-53. doi:10.1016/j.cell.2011.10.003.; Shao Y, Saredy J, Yang WY, Sun Y, Lu Y, Saaoud F, Drummer C 4th, Johnson C, Xu K, Jiang X, Wang H, Yang X. Vascular Endothelial Cells and Innate Immunity. Arterioscler Thromb Vasc Biol. 2020;40(6):e138-e152. doi:10.1161/ATVBAHA.120.314330.; Zhou B, Magana L, Hong Z, Huang LS, Chakraborty S, Tsukasaki Y, Huang C, Wang L, Di A, Ganesh B, Gao X, Rehman J, Malik AB. The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic-epigenetic reprogramming and resolves inflammatory injury. Nat Immunol. 2020;21(11):1430-1443. doi:10.1038/s41590-020-0764-8.; Zhang J, Muri J, Fitzgerald G, Gorski T, Gianni-Barrera R, Masschelein E, D'Hulst G, Gilardoni P, Turiel G, Fan Z, Wang T, Planque M, Carmeliet P, Pellerin L, Wolfrum C, Fendt SM, Banfi A, Stockmann C, Soro-Arnáiz I, Kopf M, De Bock K. Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metab. 2020;31(6):1136-1153.e7. doi:10.1016/j.cmet.2020.05.004.; Moura Silva H, Kitoko JZ, Queiroz CP, Kroehling L, Matheis F, Yang KL, Reis BS, Ren-Fielding C, Littman DR, Bozza MT, Mucida D, Lafaille JJ. c-MAF-dependent perivascular macrophages regulate diet-induced metabolic syndrome. Sci Immunol. 2021;6(64):eabg7506. doi:10.1126/sciimmunol.abg7506.; Monelli E, Villacampa P, Zabala-Letona A, Martinez-Romero A, Llena J, Beiroa D, Gouveia L, Chivite I, Zagmutt S, Gama-Perez P, Osorio-Conles O, Muixi L, Martinez-Gonzalez A, Castillo SD, Martín-Martín N, Castel P, Valcarcel-Jimenez L, Garcia-Gonzalez I, Villena JA, Fernandez-Ruiz S, Serra D, Herrero L, Benedito R, Garcia-Roves P, Vidal J, Cohen P, Nogueiras R, Claret M, Carracedo A, Graupera M. Angiocrine polyamine production regulates adiposity. Nat Metab. 2022;4(3):327-343. doi:10.1038/s42255-022-00544-6.; Alon R, Sportiello M, Kozlovski S, Kumar A, Reilly EC, Zarbock A, Garbi N, Topham DJ. Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nat Rev Immunol. 2021;21(1):49-64. doi:10.1038/s41577-020-00470-2.; Yao Z, Mates JM, Cheplowitz AM, Hammer LP, Maiseyeu A, Phillips GS, Wewers MD, Rajaram MV, Robinson JM, Anderson CL, Ganesan LP. Blood-Borne Lipopolysaccharide Is Rapidly Eliminated by Liver Sinusoidal Endothelial Cells via High-Density Lipoprotein. J Immunol. 2016;197(6):2390-9. doi:10.4049/jimmunol.1600702.; Carpino G, Del Ben M, Pastori D, Carnevale R, Baratta F, Overi D, Francis H, Cardinale V, Onori P, Safarikia S, Cammisotto V, Alvaro D, Svegliati-Baroni G, Angelico F, Gaudio E, Violi F. Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology. 2020;72(2):470-485. doi:10.1002/hep.31056.

  6. 6
  7. 7

    Zdroj: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 50-57
    Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 50-57

    Popis súboru: text/html

  8. 8

    Prispievatelia: V. V. Kadyshev S. V. Averyanova S. V. Kuznetsova a ďalší

    Zdroj: Medical Genetics; Том 23, № 10 (2024); 21-29 ; Медицинская генетика; Том 23, № 10 (2024); 21-29 ; 2073-7998

    Popis súboru: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2560/1822; Huang Z.Y., Liang L.N., Li Y.M., et al. Genetic, environmental and other risk factors for progression of retinitis pigmentosa. Int J Ophthalmol. 2022;15(5):828-837.; Yang Z., Yang J., Zhang Q., et al. Writing Group For Practice Guidelines For Diagnosis And Treatment Of Genetic Diseases Medical Genetics Branch Of Chinese Medical Association. 2020;37(3):295-299.; Кадышев В.В. Наследственные заболевания глаз: эпидемиология, генетическая гетерогенность, клинический полиморфизм. Диссертация на соискание ученой степени д.м.н. 2023. С. 303-304.; Verbakel S.K., van Huet R.A.C., Boon C.J.F., et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157-186.; O’Neal T.B., Luther E.E. Retinitis Pigmentosa. In: StatPearls. Treasure Island (FL). StatPearls Publishing. 2021.; Bruninx R., Lepièce G. L’image du mois. La rétinite pigmentaire [Retinitis pigmentosa]. Rev Med Liege. 2020;75(2):73-74.; Delmaghani S., El-Amraoui A. The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet. 2022;141;709-735.; Bonnet C., El-Amraoui A. Usher syndrome (sensorineural deafness and retinitis pigmentosa): pathogenesis, molecular diagnosis and therapeutic approaches. Curr Opin Neurol. 2012;25:42-49.; Castiglione A., Moller C. Usher syndrome. Audiol Res. 2022;12:42-65.; Geleoc G.G.S., El-Amraoui A. Disease mechanisms and gene therapy for Usher syndrome. Hear Res. 2020;394:107932.; Mathur P., Yang J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta. 2015;1852:406-420.; Nisenbaum E., Thielhelm T.P., Nourbakhsh A., et al. Review of genotype-phenotype correlations in Usher syndrome. Ear Hear. 2021;43(1):1-8.; Orphanet Report Series – Prevalence of rare diseases: Bibliographic data. January 2019. Доступно по ссылке https://www.orpha.net/pdfs/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf; Millán J.M., Aller E., Jaijo T., et al. An Update on the Genetics of Usher Syndrome. J. Ophthalmol. 2011;2011:1-8.; Fuster-García C., García-Bohórquez B., Rodríguez-Muñoz A., et al. Usher Syndrome: Genetics of a Human Ciliopathy. International Journal of Molecular Sciences. 2021;22(13):6723.; Koenekoop R., Arriaga M., Trzupek K.M., et al. Usher Syndrome Type II. 2020. In: Adam M.P., Everman D.B., Mirzaa G.M. et al., editors. GeneReviews®. Seattle (WA): University of Washington.; Pierrottet C.O., Zuntini M., Digiuni M., et al. Syndromic and non-syndromic forms of retinitis pigmentosa: a comprehensive Italian clinical and molecular study reveals new mutations. Genet Mol Res. 2014;13(4):8815-8833.; Fahim A.T., Daiger S.P., Weleber R.G. Nonsyndromic Retinitis Pigmentosa Overview. 2017. In: Adam M.P., Everman D.B., Mirzaa G.M. et al., editors. GeneReviews®. Seattle (WA): University of Washington.; Медицинская генетика: национальное руководство. Под ред. Гинтера Е.К., Пузырева В.П., Куцева С.И. Москва: ГЭОТАР-Медиа, 2022.-896 с. 2022;896:441-447.; Sullivan L.S., Bowne S.J., Birch D.G., et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Vis Sci. 2006;47(7):3052-3064.; Duncan J.L., Bernstein P.S., Birch D.G., et al. Recommendations on clinical assessment of patients with inherited retinal degenerations – 2016. American Academy of Ophthalmology. 2016.; Гинтер Е.К. Генетика в офтальмологии. Медицинская генетика. 2006;5(7):3–8.; Винер М.Е., Атарщиков Д.С., Кадышев В.В., и др. Особенности патофизиологии зрительного цикла, каскада и метаболических путей при пигментном ретините. Российский офтальмологический журнал. 2021;14(1):80–88.

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Zdroj: Vavilov Journal of Genetics and Breeding; Том 27, № 1 (2023); 18-27 ; Вавиловский журнал генетики и селекции; Том 27, № 1 (2023); 18-27 ; 2500-3259 ; 10.18699/VJGB-23-01

    Popis súboru: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3628/1679; Arin M.J., Grimberg G., Schumann H., de Almeida H. Jr., Chang Y.- R., Tadini G., Kohlhase J., Krieg T., Bruckner-Tuderman L., Has C. Identification of novel and known KRT5 and KRT14 mutations in 53 patients with epidermolysis bullosa simplex: correlation between genotype and phenotype. Br. J. Dermatol. 2010;162(6):1365-1369. DOI 10.1111/j.1365-2133.2010.09657.x.; Asaka T., Akiyama M., Domon T., Nishie W., Natsuga K., Fujita Y., Abe R., Kitagawa Y., Shimizu H. Type XVII collagen is a key player in tooth enamel formation. Am. J. Pathol. 2009;174(1):91-100. DOI 10.2353/AJPATH.2009.080573.; Aumailley M., el Khal A., Knöss N., Tunggal L. Laminin 5 processing and its integration into the ECM. Matrix Biol. 2003;22(1):49-54. DOI 10.1016/S0945-053X(03)00013-1.; Bardhan A., Bruckner-Tuderman L., Chapple I.L.C., Fine J.-D., Harper N., Has C., Magin T.M., Marinkovich M.P., Marshall J.F., McGrath J.A., Mellerio J.E., Polson R., Heagerty A.H. Epidermolysis bullosa. Nat. Rev. Dis. Primers. 2020;6(1):78. DOI 10.1038/s41572-020-0210-0.; Bolling M.C., Lemmink H.H., Jansen G.H.L., Jonkman M.F. Mutations in KRT5 and KRT14 cause epidermolysis bullosa simplex in 75 % of the patients. Br. J. Dermatol. 2011;164(3):637-644. DOI 10.1111/j.1365-2133.2010.10146.x.; Bruckner-Tuderman L., Mcgrath J.A., Robinson E.C., Uitto J. Progress in Epidermolysis bullosa research: summary of DEBRA International Research Conference 2012. J. Invest. Dermatol. 2013;133(9): 2121-2126. DOI 10.1038/jid.2013.127.; Bunick C.G., Milstone L.M. The X-ray crystal structure of the keratin 1-keratin 10 helix 2B heterodimer reveals molecular surface properties and biochemical insights into human skin disease. J. Invest. Dermatol. 2017;137(1):142-150. DOI 10.1016/j.jid.2016.08.018.; Chen M., Keene D.R., Costa F.K., Tahk S.H., Woodley D.T. The carboxyl terminus of type VII collagen mediates antiparallel dimer formation and constitutes a new antigenic epitope for epidermolysis bullosa acquisita autoantibodies. J. Biol. Chem. 2001;276(24):21649-21655. DOI 10.1074/JBC.M100180200.; Chung H.J., Uitto J. Type VII collagen: the anchoring fibril protein at fault in dystrophic epidermolysis bullosa. Dermatol. Clin. 2010; 28(1):93-105. DOI 10.1016/J.DET.2009.10.011.; Condrat I., He Y., Cosgarea R., Has C. Junctional epidermolysis bullosa: allelic heterogeneity and mutation stratification for precision medicine. Front. Med. (Lausanne). 2019;5:363. DOI 10.3389/fmed.2018.00363.; Dhanoa B.S., Cogliati T., Satish A.G., Bruford E.A., Friedman J.S. Update on the Kelch-like (KLHL) gene family. Hum. Genomics. 2013;7(1):13. DOI 10.1186/1479-7364-7-13.; Dogic D., Rousselle P., Aumailley M. Cell adhesion to laminin 1 or 5 induces isoform-specific clustering of integrins and other focal adhesion components. J. Cell Sci. 1998;111(Pt. 6):793-802. DOI 10.1242/JCS.111.6.793.; Fine J.-D. Inherited epidermolysis bullosa. Orphanet J. Rare Dis. 2010; 5:12. DOI 10.1186/1750-1172-5-12.; Ganani D., Malovitski K., Sarig O., Gat A., Sprecher E., Samuelov L. Epidermolysis bullosa simplex due to bi-allelic DST mutations: Case series and review of the literature. Pediatr. Dermatol. 2021;38(2): 436-441. DOI 10.1111/pde.14477.; Gostyńska K.B., Nijenhuis M., Lemmink H., Pas H.H., Pasmooij A.M.G., Lang K.K., Castañón M.J., Wiche G., Jonkman M.F. Mutation in exon 1a of PLEC, leading to disruption of plectin isoform 1a, causes autosomal-recessive skin-only epidermolysis bullosa simplex. Hum. Mol. Genet. 2015;24(11):3155-3162. DOI 10.1093/hmg/ddv066.; Grilletta E.A. Cardiac transplant for epidermolysis bullosa simplex with KLHL24 mutation-associated cardiomyopathy. JAAD Case Rep. 2019;5(10):912-914. DOI 10.1016/j.jdcr.2019.08.009.; Has C., Bauer J.W., Bodemer C., Bolling M.C., Bruckner-Tuderman L., Diem A., Fine J.-D., Heagerty A., Hovnanian A., Marinkovich M.P., Martinez A.E., McGrath J.A., Moss C., Murrell D.F., Palisson F., Schwieger-Briel A., Sprecher E., Tamai K., Uitto J., Woodley D.T., Zambruno G., Mellerio J.E. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br. J. Dermatol. 2020a;183(4):614-627. DOI 10.1111/bjd.18921.; Has C., Bruckner-Tuderman L. The genetics of skin fragility. Annu. Rev. Genomics Hum. Genet. 2014;15(1):245-268. DOI 10.1146/annurev-genom-090413-025540.; Has C., Castiglia D., del Rio M., Garcia Diez M., Piccinni E., Kiritsi D., Kohlhase J., Itin P., Martin L., Fischer J., Zambruno G., Bruckner-Tuderman L. Kindler syndrome: Extension of FERMT1 mutational spectrum and natural history. Hum. Mutat. 2011;32(11):1204-1212. DOI 10.1002/HUMU.21576.; Has C., Chang Y.-R., Volz A., Hoeping D., Kohlhase J., Bruckner-Tuderman L. Novel keratin 14 mutations in patients with severe recessive epidermolysis bullosa simplex. J. Invest. Dermatol. 2006; 126(8):1912-1914. DOI 10.1038/sj.jid.5700312.; Has C., Fischer J. Inherited epidermolysis bullosa: New diagnostics and new clinical phenotypes. Exp. Dermatol. 2019;28(10):1146-1152. DOI 10.1111/exd.13668.; Has C., Nyström A. Epidermal basement membrane in health and disease. Curr. Top. Membr. 2015;76:117-170. DOI 10.1016/bs.ctm.2015.05.003.; Has C., South A., Uitto J. Molecular therapeutics in development for epidermolysis bullosa: Update 2020. Mol. Diagn. Ther. 2020b; 24(3):299-309. DOI 10.1007/s40291-020-00466-7.; Has C., Spartà G., Kiritsi D., Weibel L., Moeller A., Vega-Warner V., Waters A., He Y., Anikster Y., Esser P., Straub B.K., Hausser I., Bockenhauer D., Dekel B., Hildebrandt F., Bruckner-Tuderman L., Laube G.F. Integrin α3 mutations with, lung, and skin disease. N. Engl. J. Med. 2012;366(16):1508-1514. DOI 10.1056/NEJMOA1110813.; Hovnanian A., Rochat A., Bodemer C., Petit E., Rivers C.A., Prost C., Fraitag S., Christiano A.M., Uitto J., Lathrop M., Barrandon Y., de Prost Y. Characterization of 18 new mutations in COL7A1 in recessive dystrophic epidermolysis bullosa provides evidence for distinct molecular mechanisms underlying defective anchoring fibril formation. Am. J. Hum. Genet. 1997;61(3):599-610. DOI 10.1086/515495.; Karamatic Crew V., Burton N., Kagan A., Green C.A., Levene C., Flinter F., Brady R.L., Daniels G., Anstee D.J. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood. 2004;104(8):2217-2223. DOI 10.1182/blood-2004-04-1512.; Kiritsi D., Has C., Bruckner-Tuderman L. Laminin 332 in junctional epidermolysis bullosa. Cell Adh. Migr. 2013;7(1):135-141. DOI 10.4161/CAM.22418.; Kiritsi D., Kern J.S., Schumann H., Kohlhase J., Has C., Bruckner-Tuderman L. Molecular mechanisms of phenotypic variability in junctional epidermolysis bullosa. J. Med. Genet. 2011;48(7):450-457. DOI 10.1136/JMG.2010.086751.; Kiritsi D., Tsakiris L., Schauer F. Plectin in skin fragility disorders. Cells. 2021;10(10):2738. DOI 10.3390/cells10102738.; Koss-Harnes D., Høyheim B., Anton-Lamprecht I., Gjesti A., Jørgensen R.S., Jahnsen F.L., Olaisen B., Wiche G., Gedde-Dahl T. A sitespecific plectin mutation causes dominant epidermolysis bullosa simplex Ogna: two identical de novo mutations. J. Invest. Dermatol. 2002;118(1):87-93. DOI 10.1046/j.0022-202x.2001.01591.x.; Kumar V., Bouameur J.E., Bär J., Rice R.H., Hornig-Do H.T., Roop D.R., Schwarz N., Brodesser S., Thiering S., Leube R.E., Wiesner R.J., Brazel C.B., Heller S., Binder H., Löffler-Wirth H., Seibel P., Magin T.M. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J. Cell Biol. 2015; 211(5):1057-1075. DOI 10.1083/JCB.201404147.; Lai-Cheong J.E., McGrath J.A. Kindler syndrome. In: Murrell D. (Ed.). Blistering Diseases: Clinical Features, Pathogenesis, Treatment. Berlin; Heidelberg: Springer, 2022;433-439. DOI 10.1007/978-3-662-45698-9_43.; Liu Y., Yue Z., Wang H., Li M., Wu X., Lin H., Han W., Lan S., Sun L. A novel ITGA3 homozygous splice mutation in an ILNEB syndrome child with slow progression. Clin. Chim. Acta. 2021;523:430-436. DOI 10.1016/J.CCA.2021.10.027.; Margadant C., Charafeddine R.A., Sonnenberg A. Unique and redundant functions of integrins in the epidermis. FASEB J. 2010;24(11): 4133-4152. DOI 10.1096/fj.09-151449.; Mariath L.M., Santin J.T., Frantz J.A., Doriqui M.J.R., Schuler-Faccini L., Kiszewski A.E. Genotype-phenotype correlations on epidermolysis bullosa with congenital absence of skin: A comprehensive review. Clin. Genet. 2021;99(1):29-41. DOI 10.1111/cge.13792.; Mariath L.M., Santin J.T., Schuler-Faccini L., Kiszewski A.E. Inherited epidermolysis bullosa: update on the clinical and genetic aspects. An. Bras. Dermatol. 2020;95(5):551-569. DOI 10.1016/j.abd.2020.05.001.; Masunaga T., Ogawa J., Akiyama M., Nishikawa T., Shimizu H., Ishiko A. Compound heterozygosity for novel splice site mutations of ITGA6 in lethal junctional epidermolysis bullosa with pyloric atresia. J. Dermatol. 2017;44(2):160-166. DOI 10.1111/1346-8138.13575.; Matsumura H., Mohri Y., Thanh Binh N., Morinaga H., Fukuda M., Ito M., Kurata S., Hoeijmakers J., Nishimura E.K. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science. 2016;351(6273):aad4395. DOI 10.1126/science.aad4395.; Murrell D.F., Pasmooij A.M.G., Pas H.H., Marr P., Klingberg S., Pfendner E., Uitto J., Sadowski S., Collins F., Widmer R., Jonkman M.F. Retrospective diagnosis of fatal BP180-deficient non- Herlitz junctional epidermolysis bullosa suggested by immunofluorescence (IF) antigen-mapping of parental carriers bearing enamel defects. J. Invest. Dermatol. 2007;127(7):1772-1775. DOI 10.1038/SJ.JID.5700766.; Natsuga K. Plectin-related skin diseases. J. Dermatol. Sci. 2015;77(3): 139-145. DOI 10.1016/j.jdermsci.2014.11.005.; Natsuga K., Nishie W., Shinkuma S., Arita K., Nakamura H., Ohyama M., Osaka H., Kambara T., Hirako Y., Shimizu H. Plectin deficiency leads to both muscular dystrophy and pyloric atresia in epidermolysis bullosa simplex. Hum. Mutat. 2010;31(10):E1687-E1698. DOI 10.1002/humu.21330.; Pânzaru M.C., Caba L., Florea L., Braha E.E., Gorduza E.V. Epidermolysis bullosa – a different genetic approach in correlation with genetic heterogeneity. Diagnostics. 2022;12(6):1325. DOI 10.3390/diagnostics12061325.; Pasmooij A.M.G., van der Steege G., Pas H.H., Sillevis Smitt J.H., Nijenhuis A.M., Zuiderveen J., Jonkman M.F. Features of epidermolysis bullosa simplex due to mutations in the ectodomain of type XVII collagen. Br. J. Dermatol. 2004;151(3):669-674. DOI 10.1111/J.1365-2133.2004.06041.X.; Prodinger C., Chottianchaiwat S., Mellerio J.E., McGrath J.A., Ozoemena L., Liu L., Moore W., Laimer M., Petrof G., Martinez A.E. The natural history of laryngo-onycho-cutaneous syndrome: A case series of six pediatric patients and literature review. Pediatr. Dermatol. 2021;38(5):1094-1101. DOI 10.1111/PDE.14790.; Rognoni E., Ruppert R., Fässler R. The kindlin family: functions, signaling properties and implications for human disease. J. Cell Sci. 2016;129(1):17-27. DOI 10.1242/JCS.161190.; Sathishkumar D., Orrin E., Terron-Kwiatkowski A., Browne F., Martinez A.E., Mellerio J.E., Ogboli M., Hoey S., Ozoemena L., Liu L., Baty D., McGrath J.A., Moss C. The p.Glu477Lys mutation in keratin 5 is strongly associated with mortality in generalized severe epidermolysis bullosa simplex. J. Invest. Dermatol. 2016;136(3):719-721. DOI 10.1016/j.jid.2015.11.024.; Sawamura D., Goto M., Yasukawa K., Sato-Matsumura K., Nakamura H., Ito K., Nakamura H., Tomita Y., Shimizu H. Genetic studies of 20 Japanese families of dystrophic epidermolysis bullosa. J. Hum. Genet. 2005;50(10):543-546. DOI 10.1007/S10038-005-0290-4.; Schumann H., Kiritsi D., Pigors M., Hausser I., Kohlhase J., Peters J., Ott H., Hyla-Klekot L., Gacka E., Sieron A.L., Valari M., Bruckner- Tuderman L., Has C. Phenotypic spectrum of epidermolysis bullosa associated with α6β4 integrin mutations. Br. J. Dermatol. 2013; 169(1):115-124. DOI 10.1111/bjd.12317.; Tong G., Xu R. The role of collagen XVII in regulating keratinocyte migration. Lab. Invest. 2004;84(10):1225-1226. DOI 10.1038/labinvest.3700168.; Uitto J., Bruckner-Tuderman L., Christiano A.M., McGrath J.A., Has C., South A.P., Kopelan B., Robinson E.C. Progress toward treatment and cure of epidermolysis bullosa: Summary of the DEBRA international research symposium EB2015. J. Invest. Dermatol. 2016; 136(2):352-358. DOI 10.1016/j.jid.2015.10.050.; Uitto J., Christiano A.M. Molecular genetics of the cutaneous basement membrane zone. Perspectives on epidermolysis bullosa and other blistering skin diseases. J. Clin. Invest. 1992;90(3):687-692. DOI 10.1172/JCI115938.; Uitto J., Chung-Honet L.C., Christiano A.M. Molecular biology and pathology of type VII collagen. Exp. Dermatol. 1992;1(1):2-11. DOI 10.1111/J.1600-0625.1992.TB00065.X.; Uitto J., Has C., Vahidnezhad H., Youssefian L., Bruckner-Tuderman L. Molecular pathology of the basement membrane zone in heritable blistering diseases: The paradigm of epidermolysis bullosa. Matrix Biol. 2017;57-58;76-85. DOI 10.1016/j.matbio.2016.07.009.; Vahidnezhad H., Youssefian L., Saeidian A.H., Mozafari N., Barzegar M., Sotoudeh S., Daneshpazhooh M., Isaian A., Zeinali S., Uitto J. KRT5 and KRT14 mutations in epidermolysis bullosa simplex with phenotypic heterogeneity, and evidence of semidominant inheritance in a multiplex family. J. Invest. Dermatol. 2016;136(9): 1897-1901. DOI 10.1016/j.jid.2016.05.106.; Vahidnezhad H., Youssefian L., Saeidian A.H., Uitto J. Phenotypic spectrum of epidermolysis bullosa: The paradigm of syndromic versus non-syndromic skin fragility disorders. J. Invest. Dermatol. 2019;139(3):522-527. DOI 10.1016/j.jid.2018.10.017.; van den Akker P.C., Jonkman M.F., Rengaw T., Bruckner-Tuderman L., Has C., Bauer J.W., Klausegger A., Zambruno G., Castiglia D., Mellerio J.E., Mcgrath J.A., van Essen A.J., Hofstra R.M.W., Swertz M.A. The international dystrophic epidermolysis bullosa patient registry: an online database of dystrophic epidermolysis bullosa patients and their COL7A1 mutations. Hum. Mutat. 2011;32(10): 1100-1107. DOI 10.1002/humu.21551.; van den Bergh F., Giudice G.J. BP180 (type XVII collagen) and its role in cutaneous biology and disease. Adv. Dermatol. 2003;19:37-71.; Varki R., Sadowski S., Pfendner E., Uitto J. Epidermolysis bullosa. I. Molecular genetics of the junctional and hemidesmosomal variants. J. Med. Genet. 2006;43(8):641-652. DOI 10.1136/JMG.2005.039685.; Varki R., Sadowski S., Uitto J., Pfendner E. Epidermolysis bullosa. II. Type VII collagen mutations and phenotype-genotype correlations in the dystrophic subtypes. J. Med. Genet. 2007;44(3):181-192. DOI 10.1136/JMG.2006.045302.; Wang R., Sun L., Habulieti X., Liu J., Guo K., Yang X., Ma D., Zhang X. Novel variants in LAMA3 and COL7A1 and recurrent variant in KRT5 underlying epidermolysis bullosa in five Chinese families. Front. Med. 2022;16(5):808-814. DOI 10.1007/S11684-021-0878-X.; Wertheim-Tysarowska K., Ołdak M., Giza A., Kutkowska-Kaźmierczak A., Sota J., Przybylska D., Woźniak K., Śniegórska D., Niepokój K., Sobczyńska-Tomaszewska A., Rygiel A.M., Płoski R., Bal J., Kowalewski C. Novel sporadic and recurrent mutations in KRT5 and KRT14 genes in Polish epidermolysis bullosa simplex patients: further insights into epidemiology and genotype-phenotype correlation. J. Appl. Genet. 2016;57(2):175-181. DOI 10.1007/s13353-015-0310-9.; Woodley D.T., Hou Y., Martin S., Li W., Chen M. Characterization of molecular mechanisms underlying mutations in dystrophic epidermolysis bullosa using site-directed mutagenesis. J. Biol. Chem. 2008;283(26):17838-17845. DOI 10.1074/JBC.M709452200.; Wright J.T., Carrion I.A., Morris C. The molecular basis of hereditary enamel defects in humans. J. Dent. Res. 2015;94(1):52-61. DOI 10.1177/0022034514556708.; Zhang X., Luo S., Wu J., Zhang L., Wang W.-hui, Degan S., Erdmann D., Hall R., Zhang J.Y. KIND1 loss sensitizes keratinocytes to UV-induced inflammatory response and DNA damage. J. Invest. Dermatol. 2017;137(2):475-483. DOI 10.1016/J.JID.2016.09.023.; https://vavilov.elpub.ru/jour/article/view/3628

  20. 20

    Prispievatelia: R. A. Ivanov S. A. Lashin Р. А. Иванов a ďalší

    Zdroj: Vavilov Journal of Genetics and Breeding; Том 27, № 7 (2023); 815­-819 ; Вавиловский журнал генетики и селекции; Том 27, № 7 (2023); 815­-819 ; 2500-3259 ; 10.18699/VJGB-23-83

    Popis súboru: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3981/1768; Augustin R.C., Delgoffe G.M., Najjar Y.G. Characteristics of the tumor microenvironment that influence immune cell functions: hypoxia, oxidative stress, metabolic alterations. Cancers (Basel). 2020; 12(12):3802. DOI 10.3390/cancers12123802; Baca S.C., Prandi D., Lawrence M.S., Mosquera J.M., Romanel A., Drier Y., Park K., Kitabayashi N., MacDonald T.Y., Ghandi M., Van Allen E., Kryukov G.V., Sboner A., Theurillat J.-P., Soong T.D., Nickerson E., Auclair D., Tewari A., Beltran H., Onofrio R.C., Boysen G., Guiducci C., Barbieri C.E., Cibulskis K., Sivachenko A., Carter S.L., Saksena G., Voet D., Ramos A.H., Winckler W., Cipicchio M., Ardlie K., Kantoff P.W., Berger M.F., Gabriel S.B., Golub T.R., Meyerson M., Lander E.S., Elemento O., Getz G., Demichelis F., Rubin M.A., Garraway L.A. Punctuated evolution of prostate cancer genomes. Cell. 2013;153(3):666-677. DOI 10.1016/j.cell.2013.03.021; Besse A., Clapp G.D., Bernard S., Nicolini F.E., Levy D., Lepoutre T. Stability analysis of a model of interaction between the immune system and cancer cells in chronic myelogenous leukemia. Bull. Math. Biol. 2018;80(5):1084-1110. DOI 10.1007/s11538-017-0272-7; Bonnet D., Dick J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997;3(7):730-737. DOI 10.1038/nm0797-730; Deng G., Zhang X., Chen Y., Liang S., Liu S., Yu Z., Lü M. Singlecell transcriptome sequencing reveals heterogeneity of gastric cancer: progress and prospects. Front. Oncol. 2023;13:1074268. DOI 10.3389/fonc.2023.1074268; Durrett R., Foo J., Leder K., Mayberry J., Michor F. Intratumor heterogeneity in evolutionary models of tumor progression. Genetics. 2011;188(2):461-477. DOI 10.1534/genetics.110.125724; Fearon E.R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759-767. DOI 10.1016/0092-8674(90)90186-I; Flavahan W.A., Gaskell E., Bernstein B.E. Epigenetic plasticity and the hallmarks of cancer. Science. 2017;357(6348):eaal2380. DOI 10.1126/science.aal2380; Furukawa Y., Kikuchi J. Molecular basis of clonal evolution in multiple myeloma. Int. J. Hematol. 2020;111(4):496-511. DOI 10.1007/s12185-020-02829-6; Gawad C., Koh W., Quake S.R. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc. Natl. Acad. Sci. USA. 2014;111(50):17947-17952. DOI 10.1073/pnas.1420822111; Gertz E.M., Chowdhury S.A., Lee W.-J., Wangsa D., HeselmeyerHaddad K., Ried T., Schwartz R., Schäffer A.A. FISHtrees 3.0: tumor phylogenetics using a ploidy probe. PLoS One. 2016;11(6): e0158569. DOI 10.1371/journal.pone.0158569; Graham T.A., Sottoriva A. Measuring cancer evolution from the genome. J. Pathol. 2017;241(2):183-191. DOI 10.1002/path.4821; Haffner M.C., Zwart W., Roudier M.P., True L.D., Nelson W.G., Epstein J.I., De Marzo A.M., Nelson P.S., Yegnasubramanian S. Genomic and phenotypic heterogeneity in prostate cancer. Nat. Rev. Urol. 2021;18(2):79-92. DOI 10.1038/s41585-020-00400-w; Hata M., Hayakawa Y., Koike K. Gastric stem cell and cellular origin of cancer. Biomedicines. 2018;6(4):100. DOI 10.3390/biomedicines6040100; Hausser J., Alon U. Tumour heterogeneity and the evolutionary tradeoffs of cancer. Nat. Rev. Cancer. 2020;20(4):247-257. DOI 10.1038/s41568-020-0241-6; Heinrich S., Craig A.J., Ma L., Heinrich B., Greten T.F., Wang X.W. Understanding tumour cell heterogeneity and its implication for immunotherapy in liver cancer using single-cell analysis. J. Hepatol. 2021;74(3):700-715. DOI 10.1016/j.jhep.2020.11.036; Koh G., Degasperi A., Zou X., Momen S., Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat. Rev. Cancer. 2021;21(10):619-637. DOI 10.1038/s41568-021-00377-7; Lee T.K.-W., Guan X.-Y., Ma S. Cancer stem cells in hepatocellular carcinoma – from origin to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 2022;19(1):26-44. DOI 10.1038/s41575-021-00508-3; Losic B., CraigA.J., Villacorta-Martin C., Martins-Filho S.N., Akers N., Chen X., Ahsen M.E., von Felden J., Labgaa I., DʹAvola D., Allette K., Lira S.A., Furtado G.C., Garcia-Lezana T., Restrepo P., Stueck A., Ward S.C., Fiel M.I., Hiotis S.P., Gunasekaran G., Sia D., Schadt E.E., Sebra R., Schwartz M., Llovet J.M., Thung S., Stolovitzky G., Villanueva A. Intratumoral heterogeneity and clonal evolution in liver cancer. Nat. Commun. 2020;11(1):291. DOI 10.1038/s41467-019-14050-z; Lüönd F., Tiede S., Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br. J. Cancer. 2021;125(2):164-175. DOI 10.1038/s41416-021-01328-7; Meacham C.E., Morrison S.J. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328-337. DOI 10.1038/nature12624; Merlo L.M.F., Pepper J.W., Reid B.J., Maley C.C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer. 2006;6(12):924-935. DOI 10.1038/nrc2013; Morris L.G.T., Riaz N., Desrichard A., Şenbabaoğlu Y., Hakimi A.A., Makarov V., Reis-Filho J.S., Chan T.A. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget. 2016;7(9):10051-10063. DOI 10.18632/oncotarget.7067; Mumenthaler S.M., Foo J., Choi N.C., Heise N., Leder K., Agus D.B., Pao W., Michor F., Mallick P. The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells. Cancer Inform. 2015;14(Suppl.4):19-31. DOI 10.4137/CIN.S19338; Navin N.E. The first five years of single-cell cancer genomics and beyond. Genome Res. 2015;25(10):1499-1507. DOI 10.1101/gr.191098.115; Nowell P. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23-28. DOI 10.1126/science.959840; Reya T., Morrison S.J., Clarke M.F., Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-111. DOI 10.1038/35102167; Robertson-Tessi M., Gillies R.J., Gatenby R.A., Anderson A.R.A. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Res. 2015;75(8):1567-1579. DOI 10.1158/0008-5472.CAN-14-1428; Roma-Rodrigues C., Mendes R., Baptista P., Fernandes A. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 2019; 20(4):840. DOI 10.3390/ijms20040840; Vendramin R., Litchfield K., Swanton C. Cancer evolution: Darwin and beyond. EMBO J. 2021;40(18):e108389. DOI 10.15252/embj.2021108389; Vosberg S., Greif P.A. Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes Chromosomes Cancer. 2019;58(12): 839-849. DOI 10.1002/gcc.22806; Walcher L., KistenmacherA.-K., Suo H., KitteR., Dluczek S., StraußA., Blaudszun A.-R., Yevsa T., Fricke S., Kossatz-Boehlert U. Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front. Immunol. 2020;11:1280. DOI 10.3389/fimmu.2020.01280; Wang Y., Waters J., Leung M.L., Unruh A., Roh W., Shi X., Chen K., Scheet P., Vattathil S., Liang H., Multani A., Zhang H., Zhao R., Michor F., Meric-Bernstam F., Navin N.E. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature. 2014;512(7513):155-160. DOI 10.1038/nature13600; Williams M.J., Werner B., Barnes C.P., Graham T.A., Sottoriva A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 2016;48(3):238-244. DOI 10.1038/ng.3489; Yao J., Chen J., Li L.-Y., Wu M. Epigenetic plasticity of enhancers in cancer. Transcription. 2020;11(1):26-36. DOI 10.1080/21541264.2020.1713682; Zarzynska J.M. The role of stem cells in breast cancer. In: Breast Cancer – From Biology to Medicine. InTech, 2017. DOI 10.5772/66904; Zhao T., Chiang Z.D., Morriss J.W., LaFave L.M., Murray E.M., Del Priore I., Meli K., Lareau C.A., Nadaf N.M., Li J., Earl A.S., Macosko E.Z., Jacks T., Buenrostro J.D., Chen F. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature. 2022;601(7891):85-91. DOI 10.1038/s41586-021-04217-4; https://vavilov.elpub.ru/jour/article/view/3981