Suchergebnisse - "ГЕНЕТИЧЕСКИЕ ЗАБОЛЕВАНИЯ"

  1. 1
  2. 2

    Geographisches Schlagwort: USPU

    Relation: Специальное образование. 2022. № 1 (65)

  3. 3
  4. 4

    Weitere Verfasser: A. A. Dokshukina Je. Shubina D. N. Maslennikov et al.

    Quelle: Acta Biomedica Scientifica; Том 9, № 4 (2024); 61-68 ; 2587-9596 ; 2541-9420

    Dateibeschreibung: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4946/2858; Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease and evolution. Environ Mol Mutagen. 2015; 56(5): 419-436. doi:10.1002/em.21943; Yuan H, Shangguan S, Li Z, Luo J, Su J, Yao R, et al. CNV profiles of Chinese pediatric patients with developmental disorders. Genet Med. 2021; 23(4): 669-678. doi:10.1038/s41436-020-01048-y; Harel T, Lupski JR. Genomic disorders 20 years on – Mechanisms for clinical manifestations. Clin Genet. 2018; 93(3): 439-449. doi:10.1111/cge.13146; 100,000 Genomes Project Pilot Investigators; Smedley D, Smith KR, Martin A, Thomas EA, McDonagh EM, et al. 100,000 genomes pilot on rare-disease diagnosis in health care – Preliminary report. N Engl J Med. 2021; 385(20): 1868-1880. doi:10.1056/NEJMoa2035790; Li YR, Glessner JT, Coe BP, Li J, Mohebnasab M, Chang X, et al. Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations. Nat Commun. 2020; 11(1): 255. doi:10.1038/s41467-019-13624-1; Gabrielaite M, Torp MH, Rasmussen MS, Andreu-Sánchez S, Vieira FG, Pedersen CB, et al. A comparison of tools for copy-number variation detection in germline whole exome and whole genome sequencing data. Cancers. 2021; 13(24): 6283. doi:10.3390/ cancers13246283; Louw N, Carstens N, Lombard Z; for DDD-Africa as members of the H3Africa Consortium. Incorporating CNV analysis improves the yield of exome sequencing for rare monogenic disorders – An important consideration for resource-constrained settings. Front Genet. 2023; 14: 1277784. doi:10.3389/fgene.2023.1277784; Померанцева Е.А., Докшукина А.А., Дегтярева А.В., Масленников Д.Н., Трофимов Д.Ю., Дегтярев Д.Н. Критерии оценки фенотипа новорожденного для формирования группы повышенного риска генетических заболеваний. Неонатология: новости, мнения, обучение. 2022; 10(4): 47-53. doi:10.33029/2308-2402-2022-10-4-47-53; Petit F, Andrieux J, Holder-Espinasse M, Bouquillon S, Pennaforte T, Storme L, et al. Xq12q13.1 microduplication encompassing the EFNB1 gene in a boy with congenital diaphragmatic hernia. Eur J Med Genet. 2011; 54(5): e525-e527. doi:10.1016/j.ejmg.2011.06.011; Krepischi ACV, Villela D, da Costa SS, Mazzonetto PC, Schauren J, Migliavacca MP, et al. Chromosomal microarray analyses from 5778 patients with neurodevelopmental disorders and congenital anomalies in Brazil. Sci Rep. 2022; 12(1): 15184. doi:10.1038/s41598-022-19274-6; Лебедев И.Н., Шилова Н.В., Юров И.Ю., Малышева О.В., Твеленева А.А., Миньженкова М.Е., и др. Рекомендации Российского общества медицинских генетиков по хромосомному микроматричному анализу. Медицинская генетика. 2023; 22(10): 3-47. doi:10.25557/20737998.2023.10.3-47; Levy B, Wapner R. Prenatal diagnosis by chromosomal microarray analysis. Fertil Steril. 2018; 109(2): 201-212. doi:10.1016/j.fertnstert.2018.01.005; Teles TM, Paula CM, Ramos MG, Costa HB, Andrade CR, Coxir SA, et al. Frequency of chromosomal abnormalities in products of conception. Rev Bras Ginecol Obstet. 2017; 39(03): 110-114. doi:10.1055/s-0037-1600521; Genovese A, Butler MG. Clinical assessment, genetics, and treatment approaches in autism spectrum disorder (ASD). Int J Mol Sci. 2020; 21(13): 4726. doi:10.3390/ijms21134726; Bedeschi MF, Novelli A, Bernardini L, Parazzini C, Bianchi V, Torres B, et al. Association of syndromic mental retardation with an Xq12q13.1 duplication encompassing the oligophrenin 1 gene. Am J Med Genet A. 2008; 146A: 1718-1724. doi:10.1002/ajmg.a.32365; https://www.actabiomedica.ru/jour/article/view/4946

  5. 5
  6. 6
  7. 7
  8. 8

    Quelle: Ukrainian Journal of Dermatology, Venerology, Cosmetology; № 1 (2019); 93-97
    Украинский журнал дерматологии, венерологии, косметологии; № 1 (2019); 93-97
    Український журнал дерматології, венерології, косметології; № 1 (2019); 93-97

    Dateibeschreibung: application/pdf

  9. 9

    Dateibeschreibung: application/pdf

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Quelle: Biological Products. Prevention, Diagnosis, Treatment; Том 19, № 4 (2019); 225-232 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 19, № 4 (2019); 225-232 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2019-19-4

    Dateibeschreibung: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/254/250; Guttmacher AE, Collins FS. Genomic medicine – a primer. N Engl J Med. 2002;347(19):1512–20. https://doi.org/10.1056/NEJMra012240; Fischer A, Cavazzana-Calvo M. Gene therapy of inherited diseases. Lancet. 2008;371(9629):2044–7. https://doi.org/10.1016/S0140-6736(08)60874-0; Мельникова ЕВ, Меркулова ОВ, Рачинская ОА, Чапленко АА, Меркулов ВА, Олефир ЮВ и др. Современные подходы к проведению оценки качества препаратов для клеточной терапии. Биофармацевтический журнал. 2016;8(4):35–46.; Abbott A. Italians first to use stem cells. Nature. 1992;356(6369):465. https://doi.org/10.1038/356465a0; Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P, et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science. 1995;270(5235):470–5. https://doi.org/10.1126/science.270.5235.470; Chan B, Wara D, Bastian J, Hershfield MS, Bohnsack J, Azen CG, et al. Long-term efficacy of enzyme replacement therapy for Adenosine deaminase (ADA)-deficient Severe Combined Immunodeficiency (SCID). Clin Immunol. 2005;117(2):133–43. https://doi.org/10.1016/j.clim.2005.07.006; Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science. 1995;270(5235):475–80. https://doi.org/10.1126/science.270.5235.475; Aiuti A, Vai S, Mortellaro A, Casorati G, Ficara F, Andolfi G, et al. Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med. 2002;8(5):423–5. https://doi.org/10.1038/nm0502-423; Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296(5577):2410–3. https://doi.org/10.1126/science.1070104; Rashidghamat E, McGrath JA. Novel and emerging therapies in the treatment of recessive dystrophic epidermolysis bullosa. Intractable Rare Dis Res. 2017;6(1):6–20. https://doi.org/10.5582/irdr.2017.01005; Wong T, Gammon L, Liu L, Mellerio JE, Dopping-Hepenstal PJ, Pacy J, et al. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2008;128(9):2179–89. https://doi.org/10.1038/jid.2008.78; Nagy N, Almaani N, Tanaka A, Lai-Cheong JE, Techanukul T, Mellerio JE, McGrath JA. HB-EGF induces COL7A1 expression in keratinocytes and fibroblasts: possible mechanism underlying allogeneic fibroblast therapy in recessive dystrophic epidermolysis Bullosa. J Invest Dermatol. 2011;131(8):1771–4. https://doi.org/10.1038/jid.2011.85; Natsuga K, Sawamura D, Goto M, Homma E, Goto-Ohguchi Y, Aoyagi S, et al. Response of intractable skin ulcers in recessive dystrophic epidermolysis bullosa patients to an allogeneic cultured dermal substitute. Acta Derm Venereol. 2010;90(2):165–9. https://doi.org/10.2340/00015555-0776; Falabella AF, Schachner LA, Valencia IC, Eeaglstein WH. The use of tissue-engineered skin (Apligraf) to treat a newborn with epidermosis bullosa. Arch Dermatol. 1999;135(10):1219–22. https://doi.org/10.1001/archderm.135.10.1219; Prockop DJ. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther. 2009;17(6):939–46. https://doi.org/10.1038/mt.2009.62; Conget P, Rodriguez F, Kramer S, Allers C, Simon V, Palisson F, et al. Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa. Cytotherapy. 2010;12(3):429–31. https://doi.org/10.3109/14653241003587637; Jonkman MF, Scheffer H, Stulp R, Pas HH, Nijenhuis M, Heeres K, et al. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell. 1997;88(4):543–51. https://doi.org/10.1016/s0092-8674(00)81894-2; Gostynski A, Deviaene FC, Pasmooij AM, Pas HH, Jonkman MF. Adhesive stripping to remove epidermis in junctional epidermolysis bullosa for revertant cell therapy. Br J Dermatol. 2009;161(2):444–7. https://doi.org/10.1111/j.1365-2133.2009.09118.x; Tolar J, McGrath JA, Xia L, Riddle MJ, Lees CJ, Eide C, et al. Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2014;134(5):1246–54. https://doi.org/10.1038/jid.2013.523; Umegaki-Arao N, Pasmooij AM, Itoh M, Cerise JE, Guo Z, Levy B, et al. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med. 2014;6(264):264ra164. https://doi.org/10.1126/scitranslmed.3009342; De Rosa L, Carulli S, Cocchiarella F, Quaglino D, Enzo E, Franchini E, et al. Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa. Stem Cell Reports. 2013;2(1):1–8. https://doi.org/10.1016/j.stemcr.2013.11.001; Siprashvili Z, Nguyen NT, Gorell ES, Loutit K, Khuu P, Furukawa LK, et al. Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa. JAMA. 2016;316(17):1808–17. https://doi.org/10.1001/jama.2016.15588; Titeux M, Pendaries V, Zanta-Boussif MA, Décha A, Pironon N, Tonasso L, et al. SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa. Mol Ther. 2010;18(8):1509–18. https://doi.org/10.1038/mt.2010.91; Ortiz-Urda S, Lin Q, Green CL, Keene DR, Marinkovich MP, Khavari PA. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest. 2003;111(2):251–5. https://doi.org/10.1172/JCI17193; Piel FB. The present and future global burden of the inherited disorders of hemoglobin. Hematol Oncol Clin North Am. 2016;30(2):327–41. https://doi.org/10.1016/j.hoc.2015.11.004; Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61–76. https://doi.org/10.1097/GIM.0b013e3181cd68ed; Lucarelli G, Isgrò A, Sodani P, Gaziev J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012;2(5):a011825. https://doi.org/10.1101/cshperspect.a011825; Takekoshi KJ, Oh YH, Westerman KW, London IM, Leboulch P. Retroviral transfer of a human beta-globin/delta-globin hybrid gene linked to beta locus control region hypersensitive site 2 aimed at the gene therapy of sickle cell disease. Proc Natl Acad Sci USA. 1995;92(7):3014–8. https://doi.org/10.1073/pnas.92.7.3014; Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2018;378(16):1479–93. https://doi.org/10.1056/NEJMoa1705342; Ingram VM. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. 1956;178(4537):792–4. https://doi.org/10.1038/178792a0; Strouse JJ, Lanzkron S, Beach MC, Haywood C, Park H, Witkop C, et al. Hydroxyurea for sickle cell disease: a systematic review for efficacy and toxicity in children. Pediatrics. 2008;122(6):1332–42. https://doi.org/10.1542/peds.2008-0441; Krishnamurti L, Abel S, Maiers M, Flesch S. Availability of unrelated donors for hematopoietic stem cell transplantation for hemoglobinopathies. Bone Marrow Transplant. 2003;31(7):547–50. https://doi.org/10.1038/sj.bmt.1703887; Badat M, Davies J. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017;376(21):2093–4. https://doi.org/10.1056/NEJMc1704009; Fairbanks KD, Tavill AS. Liver disease in alpha 1-antitrypsin deficiency: a review. Am J Gastroenterol. 2008;103(8):2136–41.; Gooptu B, Lomas DA. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem. 2009;78:147–76. https://doi.org/10.1146/annurev.biochem.78.082107.133320; Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478(7369):391–6. https://doi.org/10.1038/nature10424; Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA. 2008;105(27):9290–5. https://doi.org/10.1073/pnas.0801017105; Graw J, Brackmann HH, Oldenburg J, Schneppenheim R, Spannagl M, Schwaab R. Haemophilia A: from mutation analysis to new therapies. Nat Rev Genet. 2005;6(6):488–501. https://doi.org/10.1038/nrg1617; Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 2015;17(2):213–20. https://doi.org/10.1016/j.stem.2015.07.001; Béroud C, Tuffery-Giraud S, Matsuo M, Hamroun D, Humbertclaude V, Monnier N, et al. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat. 2007;28(2):196–202. https://doi.org/10.1002/humu.20428; Wilton SD, Lloyd F, Carville K, Fletcher S, Honeyman K, Agrawal S, Kole R. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord. 1999;9(5):330–8. https://doi.org/10.1016/s0960-8966(99)00010-3; Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell. 2016;18(4):533–40. https://doi.org/10.1016/j.stem.2016.01.021; Law PK, Goodwin TG, Fang Q, Duggirala V, Larkin C, Florendo JA, et al. Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell Transplant. 1992;1(2-3):235–44. https://doi.org/10.1177/0963689792001002-305; Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard JP, Roy R, et al. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol. 2006;65(4):371–86. https://doi.org/10.1097/01.jnen.0000218443.45782.81; https://www.biopreparations.ru/jour/article/view/254

  15. 15

    Weitere Verfasser: S. Sh. Khayat L. F. Kurilo V. B. Chernykh et al.

    Quelle: Andrology and Genital Surgery; Том 20, № 2 (2019); 64-68 ; Андрология и генитальная хирургия; Том 20, № 2 (2019); 64-68 ; 2412-8902 ; 2070-9781 ; 10.17650/2070-9781-2019-20-2

    Dateibeschreibung: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/355/324; Niederberger C., Pellicer A., Cohen J. et al. Forty years of IVF. Fertil Steril 2018;110(2):185—324. DOI:10.1016/j.fertnstert.2018.06.005.; Karabinus D.S., Marazzo D.P., Stern H.J. et al. The effectiveness of flow cytometric sorting of human sperm (MicroSort®) for influencing a child's sex. Reprod Biol Endocrinol 2014;12:106. DOI:10.1186/1477-7827-12-106.; Ericsson R.J., Langevin C.N., Nishino M. Isolation of fractions rich in human Y sperm. Nature 1973;246(5433):421—4.; Harton G.L., Harper J.C., Coonen E. ESHRE PGD consortium best practice guidelines for fluorescence in situ hybridization-based PGD. Hum Reprod 2011;26(1):25—32. DOI:10.1093/humrep/deq230.; De Wert G., Dondorp W., Shenfield F. et al. ESHRE task force on ethics and Law22: preimplantation genetic diagnosis. Hum Reprod 2014;29(8):1610—7. DOI:10.1093/humrep/deu132.; Pinto L.L., Vieira T.A., Giugliani R., Schwartz I.V Expression of the disease on female carriers of X-linked lysosomal disorders: a brief review. Orphanet J Rare Dis 2010;5:14. DOI:10.1186/1750-1172-5-14.; European Convention for the protection of Human Rights and Dignity of the Human Being with Regard to the Application of Biology and Medicine (Council of Europe 1997). Available at: https://rm.coe.int/168007cf98.; UNFPA. Sex imbalances at birth: current trends, consequences and policy implications. Bangkok: UNFPA Asian and Pacific Regional Office, United Nations, 2012. Available at: https://www.unfpa.org/sites/default/files/pub-pdf/Sex%20Imbalanc-es%20at%20Birth.%20PDF%20UNFPA%20APRO%20publication%202012.pdf.; Gu B., Roy K. Sex ratio at birth in China, with reference to other areas in East Asia: what we know. Asia Pac Popul J 1995;10(3):17—42.; Mussino E., Miranda V., Ma L. Changes in sex ratio at birth among immigrant groups in Sweden. Genus 2018;74(1):13. DOI:10.1186/s41118-018-0036-8.; Guilmoto C.Z. The masculinization of births. Overview and current knowledge. Population 2015;70(2):183—244.; Duthe G., Mesle F., Vallin J. et al. High sex ratios at birth in the Caucasus: modern technology to satisfy old desires. Popul Dev Rev 2012;38(3):487—501.; Huang Y., Tang W., Mu Y. et al. The sex ratio at birth for 5,338,853 deliveries in China from 2012 to 2015: a facility-based study. PLoS One 2016;11(12):e0167575. DOI:10.1371/journal.pone.0167575.; Hesketh T., Zhu WX Abnormal sex ratios in human populations: causes and consequences. Proc Natl Acad Sci U S A 2006;103(36):13271—5. DOI:10.1073/pnas.0602203103.; Das Gupta M., Jiang L., Xie Z. et al. Why is son preference so persistent in East and South Asia? A cross-country study of China, India and the Republic of Korea. J Dev Stud 2003;40:153-87.; Sen A. Missing women — revisited. BMJ 2003;327(7427):1297-8. DOI:10.1136/bmj.327.7427.1297.; Madan K., Breuning M.H. Impact of prenatal technologies on the sex ratio in India: an overview. Genet Med 2014;16(6): 425—32. DOI:10.1038/gim.2013.172.; Чоговадзе А.Г. Особенности законодательного регулирования преимплантационной и пренатальной генетической диагностики в различных странах. Клеточная трансплантология и тканевая инженерия 2012;7(2):112—7.; Pessach N., Glasser S., Soskolne V. et. al. The Israeli National Committee for sex selection by pre-implantation genetic diagnosis: a novel approach (2005—2011). Isr J Health Policy Res 2014;3(1):33. DOI:10.1186/2045-4015-3-33.; Bayefsky M.J. Comparative preimplantation genetic diagnosis policy in Europe and the USA and its implications for reproductive tourism. Reprod Biomed Soc Online 2016;3:41—7. DOI:10.1016/j.rbms.2017.01.001.; Федеральный закон «Об основах охраны здоровья граждан в Российской Федерации» от 21 ноября 2011 г. № 323-ФЗ.; Курило Л.Ф. Некоторые морально-этические проблемы репродукции человека. В кн.: Биомедицинская этика. Под ред. В.И. Покровского. М.: Медицина, 1997. С. 151—172.; Гришина Е.М., Иванюшкин А.Я., Курило Л.Ф. Морально-этические аспекты определения и выбора пола плода. Медицинское право и этика 2001;(2):40—8.; Курило Л.Ф., Боркина ПА, Гришина Е.М. и др. Социологическое исследование, посвященное этико-правовым проблемам биомедицинских технологий. Проблемы репродукции 2001;7(6):22—6.; Курило Л.Ф., Боркина ПА, Шилейко Л.В. и др. Общественное мнение об этических и законодательных аспектах некоторых биомедицинских технологий. Медицинское право и этика 2002;(1):49—63.; https://agx.abvpress.ru/jour/article/view/355

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20