Suchergebnisse - "БЫСТРОЕ ПРОТОТИПИРОВАНИЕ"

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Quelle: Society and Science: Future Development; 123-125 ; Общество и наука: векторы развития; 123-125

    Dateibeschreibung: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6050720-0-3; https://interactive-plus.ru/e-articles/884/Action884-560534.pdf; Никонов В.В. Компас 3D. Создание моделей и 3D печать / В.В. Никонов. – СПб.: Питер, 2020. – 208 с.; Самсонов В.В. Автоматизация конструкторских работ в среде Компас-3D: учебное пособие / В.В. Самсонов, Г.А. Красильникова- М.: Академия, 2009. – 223 с. – EDN QMGJAV; Стрельцов Р.В. Применение 3D моделирования в образовательном процессе военного ВУЗА на примере создания 3D модели коробки передач автомобиля семейства КАМАЗ / Р.В. Стрельцов, Б.М. Магомедов, К.М.Абдулжалилов [и др.] // Приоритетные направления инновационной деятельности в промышленности: сборник научных статей по итогам международной научной конференции. – 2020. – С. 42-44. – EDN IINZEG; Талагай П.Г. Компьютерный курс начертательной геометрии на базе КОМПАС-3D / П.Г. Талапай. – СПб.: БХВ-Петербур, 2010. – 608 с.

  8. 8
  9. 9
  10. 10
  11. 11

    Weitere Verfasser: E. A. Sevryukova E. A. Volkova V. A. Doroshenko et al.

    Quelle: Journal of the Russian Universities. Radioelectronics; Том 24, № 3 (2021); 98-108 ; Известия высших учебных заведений России. Радиоэлектроника; Том 24, № 3 (2021); 98-108 ; 2658-4794 ; 1993-8985

    Dateibeschreibung: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/525/548; A Study on Design Principles of Automatic System for Environment Monitoring / E. A. Sevryukova, E. A. Volkova,N. V. Gubanova, A. V. Solodkov, A. V. Gorelik // 2020 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). St Petersburg and Moscow, 27–30 Jan. 2020. Piscataway: IEEE, 2020. P. 2545–2548. doi:10.1109/EIConRus49466.2020.9039522; Environmental Monitoring Systems: Review and Future Development / I. Šećerov, D. Dolinaj, D. Pavić, D. Milošević, S. Savić, S. Popov, Ž. Živanov // Wireless Engineering and Technology. 2018. Vol. 10, № 1. P. 1–18. doi:10.4236/wet.2019.101001; Othman M. F., Shazali K. Wireless sensor network Applications: A study in environment monitoring System // Procedia Engineering. 2012. Vol. 41. P. 1204–1210. doi:10.1016/j.proeng.2012.07.302; Shiravale S., Sriram P., Bhagat S. M. Flood Alert System by using Weather Forecasting Data and Wireless Sensor Network // Intern. J. of Computer Applications. 2015. Vol. 124, № 10. P. 14–16. doi:10.5120/ijca2015905608; Wiston M., Mphale K. M. Weather Forecasting: From the Early Weather Wizards to Modern-day Weather Predictions // J. of Climatology & Weather Forecasting. 2018. Vol. 6, № 2. P. 1−9. doi:10.4172/2332-2594.1000229; Ayele T. W., Mehta R. Air Pollution Monitoring and prediction Using IoT // 2018 Second Intern. Conf. on Inventive Communication and Computational Technologies (ICICCT). Coimbatore, India, 20–21 April 2018. Piscataway: IEEE, 2018. P. 1741–1745. doi:10.1109/ICICCT.2018.8473272; A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods / X. Xie, I. Semanjski, S. Gautama, E. Tsiligiann, N. Deligiannis, R. T. Rajan, F. Pasveer, W. Philips // ISPRS Intern. J. of Geo-Information. 2017. Vol. 6, № 12. P. 1−21. doi:10.3390/ijgi6120389; A Review of Wireless Sensors and Networks' applications in Agriculture / A. Rehman, A. Z. Abbasi, N. Islam, Z. A. Shaikh // Computer Standards & Interfaces. 2014. Vol. 36, № 2. P. 263–270. doi:10.1016/j.csi.2011.03.004; Agricultural Management through wireless Sensors and Internet of Things / S. Navulur, A. S. C. S. Sastry, M. N. Giri Prasad // Intern. J. of Electrical and Computer Engineering. 2017. Vol. 7, № 6. P. 3492–3499. doi:10.11591/ijece.v7i6.pp3492-3499; Saiz-Rubio V., Rovira-Más F. From Smart Farming towards Agriculture 5.0: a Review on Crop Data Management // Agronomy. 2020. Vol. 10, № 2. P. 1−21. doi:10.3390/agronomy10020207; Mieyeville F., Galos M., Navarro D. Dynamic Reconfiguration for Software and Hardware Heterogeneous Real-time WSN // SENSORCOMM 2012: The Sixth Intern. Conf. on Sensor Technologies and Applications. Rome, Italy, IARIA, 19–24 Aug. 2012. P. 95–100.; Имитационное моделирование системы мониторинга окружающей среды / Е. А. Севрюкова, Е. А. Волкова, А. В. Угроватов, М. Д. Копылова // Изв. вузов. Электроника. 2019. Т. 25, № 5. С. 521–529. doi:10.24151/1561-5405-2019-24-5-521–529.; Node Energy Consumption Analysis in Wireless Sensor Networks / F. Luo, C. Jiang, H. Zhang, X. Wang, L. Zhang, Y. Ren // IEEE 80 th Vehicular Technology Conf. (VTC2014-Fall). Vancouver, Canada, 14−17 Sept. 2014. P. 1−5. doi:10.1109/VTCFall.2014.6966071; Smart City Pilot Projects Using LoRa and IEEE802.15.4 Technologies / G. Pasolini, C. Buratti, L. Feltrin, F. Zabini, C. De Castro, R. Verdone, O. Andrisano // Sensors. 2018. Vol. 18, iss. 4. P. 1118–1134. https://doi.org/10.3390/s18041118; Fattah H. 5G LTE Narrowband Internet of Things (NB-IoT). Boca Raton: CRC Press, 2019. 262 p. https://doi.org/10.1201/9780429455056; Paving the path to Narrowband 5G with LTE Internet of Things (IoT) // White Paper, Qualcomm. 2016. 36 p. URL: https://www.qualcomm.cn/media/documents/files/paving-the-path-to-narrowband-5g-withlte-iot.pdf (дата обращения 25.02.2021); A Primer on 3GPP Narrowband Internet of Things / Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, H. S. Razaghi // IEEE Communications Magazine. 2017. Vol. 55, № 3. P. 117–123. doi:10.1109/MCOM.2017.1600510CM; Dahlman E., Parkvall S., Skold J. 4G, LTE-Advanced Pro and The Road to 5G. London: Academic Press, 2016. 616 p.; Cellular Internet of things: technologies, standards, and performance / O. Liberg, M. Sundberg, E. Wang, J. Bergman, J. Sachs. London: Academic Press, 2017. 382 p. https://doi.org/10.1016/C2016-0-01868-5; Тарасов И. Е. ПЛИС Xilinx. Языки описания аппаратуры VHDL и Verilog, САПР, приемы проектирования. М.: Горячая линия–Телеком, 2020. 538 с.; The Zynq Book: Embedded Processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 All Programmable SoC / R. A. Elliot, M. A. Enderwitz, C. H. Louise, R. W. Stewart. Glasgow: Strathclyde Academic Media, 2014. 484 p.; https://re.eltech.ru/jour/article/view/525

  12. 12
  13. 13

    Quelle: Drug development & registration; № 3 (2018); 10-19 ; Разработка и регистрация лекарственных средств; № 3 (2018); 10-19 ; 2658-5049 ; 2305-2066

    Dateibeschreibung: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/697/677; Терентьева О. А., Флисюк Е. В. О возможностях использования технологий трехмерной печати для создания персонализированных лекарственных средств // Наука и человечество. Роль техники и науки в современном мире. Материалы международной научно-практической коференции. 2016. С. 15–18.; Aho J., Boetker J. P., Baldursdottir S. et al. Rheology as a tool for evaluation of melt processability of innovative dosage forms // International journal of pharmaceutics. 2015. V. 494. № 2. P. 623–642.; Alomari M., Mohamed, F. H., Basit, A. W. et al. Personalised dosing: printing a dose of one’s own medicine // International journal of pharmaceutics. 2015. V. 494. № 2. P. 568–577.; Badgujar B., Mundada A. The technologies used for developing orally disintegrating tablets: a review // Acta pharmaceutica. 2011. V. 61. № 2. P. 117–139.; Chua C. K., Leong K. F., An J. Introduction to rapid prototyping of biomaterials // Rapid prototyping of biomaterials. 2014. P. 1–15.; Chia H. N., Wu B. M. Recent advances in 3D printing of biomaterials // Journal of biological engineering. 2015. V. 9. № 1. P. 4.; De Groot N. L., Spiegel B. M. R., van Haalen H. G. M. et al. Gastroprotective strategies in chronic NSAID users: a costeffectiveness analysis comparing singletablet formulations with individual components // Value in Health. 2013. V 16. № 5. P. 769–777.; Dimitrov D., Schreve K., De Beer N. Advances in three dimensional printing– state of the art and future perspectives // Rapid Prototyping Journal. 2006. V. 12. № 3. P. 136–147.; Daly R., Harrington T. S., Martin G. D. et al. Inkjet printing for pharmaceutics – a review of research and manufacturing // International journal of pharmaceutics. 2015. V. 494. № 2. P. 554–567.; Elele E., Shen, Y., Susarla, R. et al. Electrodeless electrohydrodynamic drop-on-demand encapsulation of drugs into porous polymer films for fabrication of personalized dosage units // Journal of pharmaceutical sciences. 2012. V. 101. № 7. P. 2523–2533.; Goyanes A. Buanz A. B., Basit A. W. et al. Fused-filament 3D printing (3DP) for fabrication of tablets // International journal of pharmaceutics. 2014. V. 476. № 1–2. P. 88–92.; Goyanes A., Buanz A. B., Hatton G. B. et al. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets // European Journal of Pharmaceutics and Biopharmaceutics. 2015. V. 89. P. 157–162.; Gittard S. D., Narayan R. J. Laser direct writing of micro-and nano-scale medical devices // Expert review of medical devices. 2010. V. 7. № 3. P. 343–356.; Günther D., Heymel B., Franz J. et al. Continuous 3D-printing for additive manufacturing // Rapid Prototyping Journal. 2014. V. 20. № 4. P. 320–327.; Khaled S. A. Burley, J. C., Alexander, M. R. et al. Desktop 3D printing of controlled release pharmaceutical bilayer tablets // International journal of pharmaceutics. 2014. V. 461. № 1–2. P. 105–111.; Kuang M., Wang L., Song Y. Controllable printing droplets for high‐resolution patterns // Advanced materials. 2014. V. 26. № 40. Р. 6950–6958.; Katstra W. E., Palazzolo R. D., Rowe C. W. et al. Oral dosage forms fabricated by Three Dimensional Printing™ // Journal of controlled release. 2000. V. 66. № 1. P. 1–9.; Lee J. Y., Choi B., Wu B. et al. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering // Biofabrication. 2013. V. 5. № 4. P. 45.; Lewis J. A., Gratson G. M. Direct writing in three dimensions // Materials today. 2004. V. 7. № 7. P. 32–39.; Moulton S. E., Wallace G. G. 3-dimensional (3D) fabricated polymer based drug delivery systems // Journal of Controlled Release. 2014. V. 193. P. 27–34.; Mohanty S., Larsen L. B., Trifol J. et al. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds // Materials Science and Engineering: 2015. V. 55. P. 569–578.; Melchels F. P. W., Feijen J., Grijpma D. W. A review on stereolithography and its applications in biomedical engineering // Biomaterials. 2010. V. 31. № 24. P. 6121–6130.; Pietrzak K., Isreb A., Alhnan M. A. A flexible-dose dispenser for immediate and extended release 3D printed tablets // European Journal of Pharmaceutics and Biopharmaceutics. 2015. V. 96. P. 380–387.; Siegel R. A., Rathbone M. J. Overview of controlled release mechanisms // Fundamentals and applications of controlled release drug delivery. Springer US, 2012. P. 19–43.; Patent USA 5204055. Three-dimensional printing techniques / Sachs E. M. et al. 1993.; Sandler N., Määttänen A., Ihalainen P et al. Inkjet printing of drug substances and use of porous substrates‐towards individualized dosing // Journal of pharmaceutical sciences. 2011. V. 100. № 8. P. 3386–3395.; Skowyra J., Pietrzak K., Alhnan M. A. Fabrication of extended-release patienttailored prednisolone tablets via fused deposition modelling (FDM) 3D printing // European Journal of Pharmaceutical Sciences. 2015. V. 68. P. 11–17.; Thakral S., Thakral N. K., Majumdar D. K. Eudragit®: a technology evaluation // Expert opinion on drug delivery. 2013. V. 10. № 1. P. 131–149.; Rowe C. W., Katstra W. E., Palazzolo R. D. et al. Multimechanism oral dosage forms fabricated by three dimensional printing™ // Journal of controlled release. 2000. V. 66. № 1. P. 11–17.; Yu D. G., Zhu L. M., Branford-White C. J. et al. Three-dimensional printing in pharmaceutics: promises and problems // Journal of pharmaceutical sciences. 2008. V. 97. № 9. P. 3666–3690.; Yun Y. H., Kim J. D., Lee B. K. et al. Polymer inkjet printing: Construction of three-dimensional structures at microscale by repeated lamination // Macromolecular research. 2009. V. 17. № 3. P. 197–202.; https://www.pharmjournal.ru/jour/article/view/697

  14. 14
  15. 15
  16. 16
  17. 17

    Relation: Веснік Полацкага дзяржаўнага ўніверсітэта. Серыя B, Прамысловасць. Прыкладныя навукі; Herald of Polotsk State University. Series B, Industry. Applied Sciences; Вестник Полоцкого государственного университета. Серия B, Промышленность. Прикладные науки; Серия B, Промышленность. Прикладные науки;2017. - № 3; https://elib.psu.by/handle/123456789/20311; 621.91.04

  18. 18

    Relation: Веснік Полацкага дзяржаўнага ўніверсітэта. Серыя F, Будаўніцтва. Прыкладныя навукі; Herald of Polotsk State University. Series F, Civil engineering. Applied sciences; Вестник Полоцкого государственного университета. Серия F. Строительство. Прикладные науки; Серия F. Строительство. Прикладные науки;2016. - № 16; https://elib.psu.by/handle/123456789/19857; 691.87

  19. 19

    Quelle: Science, education, society: tendencies and future development; 22-25 ; Наука, образование, общество: тенденции и перспективы развития; 22-25

    Dateibeschreibung: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-9909215-7-3; https://interactive-plus.ru/e-articles/287/Action287-115959.pdf; 1. Валетов В.А. Аддитивные технологии (состояние и перспективы): Учебное пособие. – СПб.: Университет ИТМО, 2015. – 63 с.; 2. Новые производственные технологии: Публичный аналитический доклад / «Дело» РАНХиГС, 2015. – С. 57–64.; 3. Довбыш В.М. Аддитивные технологии и изделия из металла / В.М. Довбыш, П.В. Забеднов, М.А. Зленко [Электронный ресурс]. – Режим доступа: www.nami.ru/upload/AT_metall.pdf; 4. 3D Printing Manufacturing Process is Here.; Independent global forum for the Unmanned Aircraft Systems community / UAS Vision [Электронный ресурс]. – Режим доступа: http://www.uasvision.com/2012/07/16/3-d-printing-manufacturing-process-is-here/; 5. Canalys, 3D printing market to grow to US $16.2 billion in 2018, March 31 2016 [Электронный ресурс]. – Режим доступа: http://www.canalys.com/newsroom/3d-printing-market-grow-us162-billion-2018#sthash.jovzItNE.dpuf/

  20. 20