Výsledky vyhledávání - "АССОЦИАТИВНЫЕ ИССЛЕДОВАНИЯ"

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Zdroj: Neurology, Neuropsychiatry, Psychosomatics; Vol 13, No 1S (2021): Спецвыпуск: рассеянный склероз; 31-38 ; Неврология, нейропсихиатрия, психосоматика; Vol 13, No 1S (2021): Спецвыпуск: рассеянный склероз; 31-38 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2021-1S

    Popis souboru: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1645/1294; Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. 2020 Dec;26(14):1816-21. doi:10.1177/1352458520970841. Epub 2020 Nov 11.; Boyko A, Melnikov M. Prevalence and Incidence of Multiple Sclerosis in Russian Federation: 30 Years of Studies. Brain Sci. 2020 May 18;10(5):305. doi:10.3390/brainsci10050305; Бахтиярова КЗ, Галиуллин ТР, Лютов ОВ. Результаты 10-летнего опыта работы регионального центра рассеянного склероза. Журнал неврологии и психиатрии им. C.C. Корсакова. 2019;119(5-2):32-3.; Бахтиярова К, Гончарова З. Рассеянный склероз в Республике Башкортостан и Ростовской области: сравнительная эпидемиологическая характеристика. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2014;114(2-2):5-9.; Baranzini SE, Oksenberg JR. The Genetics of Multiple Sclerosis: From 0 to 200 in 50 Years. Trends Genet. 2017 Dec;33(12):960-70. doi:10.1016/j.tig.2017.09.004. Epub 2017 Oct 5.; Lvovs D, Favorova OO, Favorov AV. A polygenic approach to the study of polygenic diseases. Acta Naturae. 2012 Jul;4(3):59-71.; Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018 Feb;17(2):162-73. doi:10.1016/S1474-4422(17)30470-2. Epub 2017 Dec 21.; Животовский Л. Популяционная биометрия. Москва: Наука; 1991. 271 с.; Favorov AV, Andreewski TV, Sudomoina MA, et al. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans. Genetics. 2005 Dec;171(4):2113-21. doi:10.1534/genetics.105.048090. Epub 2005 Aug 22.; International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer S, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011 Aug 10;476(7359):214-9. doi:10.1038/nature10251; Bahlo M, Booth DR, Broadley SA, et al. Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet. 2009 Jul;41(7):824-8. doi:10.1038/ng.396. Epub 2009 Jun 14.; Sokolova EA, Malkova NA, Korobko DS, et al. Association of SNPs of CD40 Gene with Multiple Sclerosis in Russians. PloS One. 2013 Apr 22;8(4):e61032. doi:10.1371/journal.pone.0061032. Print 2013.; Ханох ЕВ, Рождественский АС, Кудрявцева ЕА и др. Исследование наследственных факторов предрасположенности к рассеянному склерозу и особенностей его течения в русской этнической группе. Сибирский научный медицинский журнал. 2011;31(1):113-8.; De Jager PL, Baecher-Allan C, Maier LM, et al. The role of the CD58 locus in multiple sclerosis. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5264-9. doi:10.1073/pnas.0813310106. Epub 2009 Feb 23.; Hunt SE, McLaren W, Gil L, et al. Ensembl variation resources. Database (Oxford). 2018 Jan 1;2018:bay119. doi:10.1093/database/bay119; Fraussen J, Claes N, van Wijmeersch B, et al. B cells of multiple sclerosis patients induce autoreactive proinflammatory T cell responses. Clin Immunol. 2016 Dec;173:124-32. doi:10.1016/j.clim.2016.10.001. Epub 2016 Oct 4.; Smets I, Fiddes B, Garcia-Perez JE, et al. Multiple sclerosis risk variants alter expression of co-stimulatory genes in B cells. Brain. 2018 Mar 1;141(3):786-96. doi:10.1093/brain/awx372; Lill CM, Schjeide BM, Graetz C, et al. MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain. 2013 Jun;136(Pt 6):1778-82. doi:10.1093/brain/awt101; Abdollah Zadeh R, Jalilian N, Sahraian MA, et al. Polymorphisms of RPS6KB1 and CD86 associates with susceptibility to multiple sclerosis in Iranian population. Neurol Res. 2017 Mar;39(3):217-22. doi:10.1080/01616412.2016.1278108. Epub 2017 Jan 12.

  9. 9
  10. 10
  11. 11

    Přispěvatelé: A. A. Traspov O. V. Kostyunina A. A. Belous a další

    Zdroj: Vavilov Journal of Genetics and Breeding; Том 24, № 2 (2020); 185-190 ; Вавиловский журнал генетики и селекции; Том 24, № 2 (2020); 185-190 ; 2500-3259 ; 10.18699/VJ20.605

    Popis souboru: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2549/1368; Долматова A.B., Сковородин Е.Н. Использование ДНК-полиморфизма в селекции свиней. В: Материалы междунар. науч.-практ. конф. «Современные проблемы интенсификации производства свинины в странах СНГ», посвященной 75-летнему юбилею заслуженного деятеля науки РФ, профессора В.Е. Уитько, 7–10 июля 2010 г. Ульяновск, 2010;138-143.; Племяшов К.В. Геномная селекция – будущее животноводства. Животноводство России. 2014;5:2-4.; Barrett J., Fry B., Maller J., Daly M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-265. DOI 10.1093/bioinformatics/bth457.; Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B. 1995;57(1):289-300. DOI 10.2307/2346101.; Boddicker N., Waide E.H., Rowland R.R.R., Lunney J.K., Garrick D.J., Reecy J.M., Dekkers J.C.M. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J. Anim. Sci. 2012;90(6):1733-1746.; Bruun C.S., Jorgensen C.B., Nielsen V.H., Andersson L., Fredholm M. Evaluation of the porcine melanocortin 4 receptor(MC4R) gene as a positional candidate for a fatness QTL in a cross between Landrace and Hampshire. Anim. Genet. 2006;37(4):359-362. DOI 10.1111/j.1365-2052.2006.01488.x.; Ciobanu D.C., Lonergan S.M., Huff-Lonergan E.J. Genetics of meat quality and carcass traits. In: Rothschild M.F., Ruvinsky A. (Eds.). The Genetics of the Pig. 2nd ed. Wallingford: CAB International, 2011;355-389.; Ernst C.W., Steibel J.P. Molecular advances in QTL discovery and application in pig breeding. Trends Genet. 2013;29(4):215-224. DOI 10.1016/j.tig.2013.02.002.; McLaren W., Gil L., Hunt S., Riat H., Ritchie G., Thormann A., Flicek P., Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122. DOI10.1186/s13059-016-0974-4.; Nyachoti C., Kiarie E., Bhandari S., Zhang G., Krause D. Weaned pig responses to Escherichia coli K88 oral challenge when receiving a lysozyme supplement. J. Anim. Sci. 2012;90(1):252-260. DOI 10.2527/jas.2010-3596.; Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M., Bender D., Maller J., Sklar P., Bakker P., Daly M., Sham P. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007;81:559-575. DOI 10.1086/519795.; Peterson R.A. Estimating normalization transformations with bestNormalize. 2017. Available at: https://github.com/petersonR/bestNormalize; Salas R., Mingala C. Genetic factors affecting pork quality: halothane and rendement napole genes. Anim. Biotechnol. 2017;28(2):148-155. DOI 10.1080/10495398.2016.1243550. Epub 2016 Nov. 17.; See T., Max F., Rothschild C., Christains J. Swine Genetic Abnormalities. Pork Information Gateway. 2006; PIG 06-06-01.; Sermyagin А., Gladyr E., Plemyashov K., Kudinov A., Dotsev A., Deniskova T., Zinovieva N. Genome-wide association studies for milk production traits in Russian population of Holstein and blackand-white cattle. In: Anisimov K.V. et al. (Eds.). Proc. of the Sci.-Pract. Conf. “Research and Development – 2016”, 14–15 Dec. 2016, Moscow, Russia. Springer Open, 2018;591-599. DOI 10.1007/978-3-319-62870-7_62.; Sermyagin A., Kovalyuk N., Ermilov A., Yanchukov I., Satsuk V., Do tsev A., Deniskova T., Brem G., Zinovieva N.A. Associations of Bola-drb3 genotypes with breeding values for milk production traits in Russian dairy cattle population. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2016;51(6):775-781. DOI 10.15389/agrobiology.2016.6.775eng.; Storey J., Bass A., Dabney A., Robinson D. qvalue: Q-value estimation for false discovery rate control. R package version 2.10.1. 2017. http://github.com/StoreyLab/qvalue; Turner S. qqman: Q-Q and Manhattan Plots for GWAS Data. R package version 0.1.4. 2017. https://CRAN.R-project.org/package=qqman; Zhou X., Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012;44:821-824. DOI 10.1038/ng.2310.; https://vavilov.elpub.ru/jour/article/view/2549

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20