Search Results - "((\"data parallel algorithms\") OR (\"mass parallel algorithms\"))"

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    Contributors: Zhimin Huang, Professor, Department of Endocrinology and Diabetes Center, the First Affiliated Hospital of Sun Yat-sen University

    Source: Validation of Insulin Dose Prediction Model Based on Long Short- Term Memory Artificial Intelligence Algorithm
    Liu L, Ke W, Li H, Li F, Fan G, Kuang J, Ma J, Zhang X, Ji B, Li S, Du Y, Xue Y, Lyu Z, Gao L, Qu S, Shi Y, Yan L, Deng W, Xu C, Dai P, Xu L, Liu J, Wan X, Wei G, Yu S, Hong S, Zhang P, Huang Z, Cao X, Liao Z, Xiao H, Mu Y, Handelsman Y, Li Y. Intense simplified strategy for newly diagnosed type 2 diabetes in patients with severe hyperglycaemia: multicentre, open label, randomised trial. BMJ. 2024 Oct 15;387:e080122. doi: 10.1136/bmj-2024-080122.
    Chen A, Huang Z, Wan X, Deng W, Wu J, Li L, Cai Q, Xiao H, Li Y. Attitudes toward diabetes affect maintenance of drug-free remission in patients with newly diagnosed type 2 diabetes after short-term continuous subcutaneous insulin infusion treatment. Diabetes Care. 2012 Mar;35(3):474-81. doi: 10.2337/dc11-1638. Epub 2012 Jan 6.
    Weng J, Li Y, Xu W, Shi L, Zhang Q, Zhu D, Hu Y, Zhou Z, Yan X, Tian H, Ran X, Luo Z, Xian J, Yan L, Li F, Zeng L, Chen Y, Yang L, Yan S, Liu J, Li M, Fu Z, Cheng H. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet. 2008 May 24;371(9626):1753-60. doi: 10.1016/S0140-6736(08)60762-X.
    Li Y, Xu W, Liao Z, Yao B, Chen X, Huang Z, Hu G, Weng J. Induction of long-term glycemic control in newly diagnosed type 2 diabetic patients is associated with improvement of beta-cell function. Diabetes Care. 2004 Nov;27(11):2597-602. doi: 10.2337/diacare.27.11.2597.

  12. 12
  13. 13
  14. 14
  15. 15

    Contributors: Xu, Lifan [Department of Computer Science, University of Delaware, Newark, DE 19716 (United States)]

    Source: Journal of Computational Physics; 231; 23; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)

    File Description: Medium: X; Size: page(s) 7795-7814

  16. 16
  17. 17
  18. 18
  19. 19

    Source: Physics Informed Machine Learning-based Prediction and Reversion of Impaired Fasting Glucose Management
    Ezzati M, Riboli E. Can noncommunicable diseases be prevented? Lessons from studies of populations and individuals. Science. 2012 Sep 21;337(6101):1482-7. doi: 10.1126/science.1227001.
    Piovani D, Nikolopoulos GK, Bonovas S. Non-Communicable Diseases: The Invisible Epidemic. J Clin Med. 2022 Oct 8;11(19):5939. doi: 10.3390/jcm11195939.
    International Diabetes Federation. IDF Diabetes Atlas, 10th Edn. Brussels, Belgium: 2021. Available at: Https://www.Diabetesatlas.Org.
    Centers for Disease Control and Prevention. National Diabetes Statistics Report 2020 Website. https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf
    Ley SH, Schulze MB, Hivert MF, Meigs JB, Hu FB. Risk Factors for Type 2 Diabetes. In: Cowie CC, Casagrande SS, Menke A, Cissell MA, Eberhardt MS, Meigs JB, Gregg EW, Knowler WC, Barrett-Connor E, Becker DJ, Brancati FL, Boyko EJ, Herman WH, Howard BV, Narayan KMV, Rewers M, Fradkin JE, editors. Diabetes in America. 3rd edition. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US); 2018 Aug. CHAPTER 13. Available from http://www.ncbi.nlm.nih.gov/books/NBK567966/
    Yang J, Qian F, Chavarro JE, Ley SH, Tobias DK, Yeung E, Hinkle SN, Bao W, Li M, Liu A, Mills JL, Sun Q, Willett WC, Hu FB, Zhang C. Modifiable risk factors and long term risk of type 2 diabetes among individuals with a history of gestational diabetes mellitus: prospective cohort study. BMJ. 2022 Sep 21;378:e070312. doi: 10.1136/bmj-2022-070312.
    American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021 Jan;44(Suppl 1):S15-S33. doi: 10.2337/dc21-S002.
    Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012 Jun 16;379(9833):2279-90. doi: 10.1016/S0140-6736(12)60283-9. Epub 2012 Jun 9.
    Almeda-Valdes P, Cuevas-Ramos D, Aguilar-Salinas CA. Metabolic syndrome and non-alcoholic fatty liver disease. Ann Hepatol. 2009;8 Suppl 1:S18-24.
    Hegde H, Shimpi N, Panny A, Glurich I, Christie P, Acharya A. Development of non-invasive diabetes risk prediction models as decision support tools designed for application in the dental clinical environment. Inform Med Unlocked. 2019;17:100254. doi: 10.1016/j.imu.2019.100254. Epub 2019 Oct 16.
    Bernabe-Ortiz A, Perel P, Miranda JJ, Smeeth L. Diagnostic accuracy of the Finnish Diabetes Risk Score (FINDRISC) for undiagnosed T2DM in Peruvian population. Prim Care Diabetes. 2018 Dec;12(6):517-525. doi: 10.1016/j.pcd.2018.07.015. Epub 2018 Aug 18.
    Jolle A, Midthjell K, Holmen J, Carlsen SM, Tuomilehto J, Bjorngaard JH, Asvold BO. Validity of the FINDRISC as a prediction tool for diabetes in a contemporary Norwegian population: a 10-year follow-up of the HUNT study. BMJ Open Diabetes Res Care. 2019 Nov 28;7(1):e000769. doi: 10.1136/bmjdrc-2019-000769. eCollection 2019.
    Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, Deftereos S, Tousoulis D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur Cardiol. 2019 Apr;14(1):50-59. doi: 10.15420/ecr.2018.33.1.
    Castiglione F, Tieri P, De Graaf A, Franceschi C, Lio P, Van Ommen B, Mazza C, Tuchel A, Bernaschi M, Samson C, Colombo T, Castellani GC, Capri M, Garagnani P, Salvioli S, Nguyen VA, Bobeldijk-Pastorova I, Krishnan S, Cappozzo A, Sacchetti M, Morettini M, Ernst M. The onset of type 2 diabetes: proposal for a multi-scale model. JMIR Res Protoc. 2013 Oct 31;2(2):e44. doi: 10.2196/resprot.2854.
    Palumbo MC, de Graaf AA, Morettini M, Tieri P, Krishnan S, Castiglione F. A computational model of the effects of macronutrients absorption and physical exercise on hormonal regulation and metabolic homeostasis. Comput Biol Med. 2023 Sep;163:107158. doi: 10.1016/j.compbiomed.2023.107158. Epub 2023 Jun 16.
    Stolfi P, Valentini I, Palumbo MC, Tieri P, Grignolio A, Castiglione F. Potential predictors of type-2 diabetes risk: machine learning, synthetic data and wearable health devices. BMC Bioinformatics. 2020 Dec 14;21(Suppl 17):508. doi: 10.1186/s12859-020-03763-4.
    Prana V, Tieri P, Palumbo MC, Mancini E, Castiglione F. Modeling the Effect of High Calorie Diet on the Interplay between Adipose Tissue, Inflammation, and Diabetes. Comput Math Methods Med. 2019 Feb 3;2019:7525834. doi: 10.1155/2019/7525834. eCollection 2019.
    Palumbo MC, Morettini M, Tieri P, Diele F, Sacchetti M, Castiglione F. Personalizing physical exercise in a computational model of fuel homeostasis. PLoS Comput Biol. 2018 Apr 26;14(4):e1006073. doi: 10.1371/journal.pcbi.1006073. eCollection 2018 Apr.
    Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics-informed machine learning. Nat Rev Phys. 2021;3(6):422-440. doi:10.1038/s42254-021-00314-5
    Zafar H, Channa A, Jeoti V, Stojanovic GM. Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. Sensors (Basel). 2022 Jan 14;22(2):638. doi: 10.3390/s22020638.
    Yao H, Shum AJ, Cowan M, Lahdesmaki I, Parviz BA. A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron. 2011 Mar 15;26(7):3290-6. doi: 10.1016/j.bios.2010.12.042. Epub 2010 Dec 31.
    Ellahham S. Artificial Intelligence: The Future for Diabetes Care. Am J Med. 2020 Aug;133(8):895-900. doi: 10.1016/j.amjmed.2020.03.033. Epub 2020 Apr 20.
    Al-Shamsi S, Govender RD, King J. External validation and clinical usefulness of three commonly used cardiovascular risk prediction scores in an Emirati population: a retrospective longitudinal cohort study. BMJ Open. 2020 Oct 28;10(10):e040680. doi: 10.1136/bmjopen-2020-040680.
    Rodrigues PM, Madeiro JP, Marques JAL. Enhancing Health and Public Health through Machine Learning: Decision Support for Smarter Choices. Bioengineering (Basel). 2023 Jul 2;10(7):792. doi: 10.3390/bioengineering10070792.
    Riley RD, Ensor J, Snell KI, Debray TP, Altman DG, Moons KG, Collins GS. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ. 2016 Jun 22;353:i3140. doi: 10.1136/bmj.i3140.
    Bleeker SE, Moll HA, Steyerberg EW, Donders AR, Derksen-Lubsen G, Grobbee DE, Moons KG. External validation is necessary in prediction research: a clinical example. J Clin Epidemiol. 2003 Sep;56(9):826-32. doi: 10.1016/s0895-4356(03)00207-5.

  20. 20

    Contributors: Lorenzo Lolli, Principal Investigator

    Source: Inter-individual Differences in Response to Recovery- and Sleep-enhancing Nutritional Supplementation in Youth Middle Eastern Football Players: A Randomized Placebo-controlled Replicate Crossover Trial
    Deng C, Graz JC. Generating randomization schedules using SAS® programming. In N.W. Galwey (Ed.), Proceedings of the twenty-seventh annual SAS users group international conference (pp. 267-327). 2002.
    Senn S, Stevens L, Chaturvedi N. Repeated measures in clinical trials: simple strategies for analysis using summary measures. Stat Med. 2000 Mar 30;19(6):861-77. doi: 10.1002/(sici)1097-0258(20000330)19:63.0.co;2-f.
    Zucker DR, Schmid CH, McIntosh MW, D'Agostino RB, Selker HP, Lau J. Combining single patient (N-of-1) trials to estimate population treatment effects and to evaluate individual patient responses to treatment. J Clin Epidemiol. 1997 Apr;50(4):401-10. doi: 10.1016/s0895-4356(96)00429-5.
    Youngstedt SD. Ceiling and floor effects in sleep research. Sleep Med Rev. 2003 Aug;7(4):351-65. doi: 10.1053/smrv.2001.0239.
    Walsh NP, Halson SL, Sargent C, Roach GD, Nedelec M, Gupta L, Leeder J, Fullagar HH, Coutts AJ, Edwards BJ, Pullinger SA, Robertson CM, Burniston JG, Lastella M, Le Meur Y, Hausswirth C, Bender AM, Grandner MA, Samuels CH. Sleep and the athlete: narrative review and 2021 expert consensus recommendations. Br J Sports Med. 2020 Nov 3:bjsports-2020-102025. doi: 10.1136/bjsports-2020-102025. Online ahead of print.
    Viechtbauer W. Confidence intervals for the amount of heterogeneity in meta-analysis. Stat Med. 2007 Jan 15;26(1):37-52. doi: 10.1002/sim.2514.
    Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, Kuss O, Higgins JP, Langan D, Salanti G. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016 Mar;7(1):55-79. doi: 10.1002/jrsm.1164. Epub 2015 Sep 2.
    Van Someren EJ, Cirelli C, Dijk DJ, Van Cauter E, Schwartz S, Chee MW. Disrupted Sleep: From Molecules to Cognition. J Neurosci. 2015 Oct 14;35(41):13889-95. doi: 10.1523/JNEUROSCI.2592-15.2015.
    Tudor-Locke C, Barreira TV, Schuna JM Jr, Mire EF, Katzmarzyk PT. Fully automated waist-worn accelerometer algorithm for detecting children's sleep-period time separate from 24-h physical activity or sedentary behaviors. Appl Physiol Nutr Metab. 2014 Jan;39(1):53-7. doi: 10.1139/apnm-2013-0173. Epub 2013 Jun 26.
    St-Onge MP, Mikic A, Pietrolungo CE. Effects of Diet on Sleep Quality. Adv Nutr. 2016 Sep 15;7(5):938-49. doi: 10.3945/an.116.012336. Print 2016 Sep.
    Short MA, Arora T, Gradisar M, Taheri S, Carskadon MA. How Many Sleep Diary Entries Are Needed to Reliably Estimate Adolescent Sleep? Sleep. 2017 Mar 1;40(3):zsx006. doi: 10.1093/sleep/zsx006.
    Shen T, Thackray AE, King JA, Alotaibi TF, Alanazi TM, Willis SA, Roberts MJ, Lolli L, Atkinson G, Stensel DJ. Are There Interindividual Responses of Cardiovascular Disease Risk Markers to Acute Exercise? A Replicate Crossover Trial. Med Sci Sports Exerc. 2024 Jan 1;56(1):63-72. doi: 10.1249/MSS.0000000000003283. Epub 2023 Aug 30.
    Shamseer L, Sampson M, Bukutu C, Schmid CH, Nikles J, Tate R, Johnston BC, Zucker D, Shadish WR, Kravitz R, Guyatt G, Altman DG, Moher D, Vohra S; CENT Group. CONSORT extension for reporting N-of-1 trials (CENT) 2015: Explanation and elaboration. BMJ. 2015 May 14;350:h1793. doi: 10.1136/bmj.h1793. No abstract available.
    Senn S. The analysis of continuous data from n-of-1 trials using paired cycles: a simple tutorial. Trials. 2024 Feb 16;25(1):128. doi: 10.1186/s13063-024-07964-7.
    Senn S. Sample size considerations for n-of-1 trials. Stat Methods Med Res. 2019 Feb;28(2):372-383. doi: 10.1177/0962280217726801. Epub 2017 Sep 7.
    Senn S. Mastering variation: variance components and personalised medicine. Stat Med. 2016 Mar 30;35(7):966-77. doi: 10.1002/sim.6739. Epub 2015 Sep 28.
    Senn S. Suspended judgment n-of-1 trials. Control Clin Trials. 1993 Feb;14(1):1-5. doi: 10.1016/0197-2456(93)90045-f. No abstract available.
    Senn S, Rolfe K, Julious SA. Investigating variability in patient response to treatment--a case study from a replicate cross-over study. Stat Methods Med Res. 2011 Dec;20(6):657-66. doi: 10.1177/0962280210379174. Epub 2010 Aug 25.
    ROSE WC, WIXOM RL, LOCKHART HB, LAMBERT GF. The amino acid requirements of man. XV. The valine requirement; summary and final observations. J Biol Chem. 1955 Dec;217(2):987-95. No abstract available.
    Reed DL, Sacco WP. Measuring Sleep Efficiency: What Should the Denominator Be? J Clin Sleep Med. 2016 Feb;12(2):263-6. doi: 10.5664/jcsm.5498.
    Quante M, Kaplan ER, Cailler M, Rueschman M, Wang R, Weng J, Taveras EM, Redline S. Actigraphy-based sleep estimation in adolescents and adults: a comparison with polysomnography using two scoring algorithms. Nat Sci Sleep. 2018 Jan 18;10:13-20. doi: 10.2147/NSS.S151085. eCollection 2018.
    Nikles J, Mitchell GK, Schluter P, Good P, Hardy J, Rowett D, Shelby-James T, Vohra S, Currow D. Aggregating single patient (n-of-1) trials in populations where recruitment and retention was difficult: the case of palliative care. J Clin Epidemiol. 2011 May;64(5):471-80. doi: 10.1016/j.jclinepi.2010.05.009. Epub 2010 Oct 8.
    Mountjoy M, Sundgot-Borgen JK, Burke LM, Ackerman KE, Blauwet C, Constantini N, Lebrun C, Lundy B, Melin AK, Meyer NL, Sherman RT, Tenforde AS, Klungland Torstveit M, Budgett R. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018 Jun;52(11):687-697. doi: 10.1136/bjsports-2018-099193. No abstract available.
    Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol. 2016 Sep 15;594(18):5135-47. doi: 10.1113/JP270654. Epub 2016 Jan 18.
    Maquet P. The role of sleep in learning and memory. Science. 2001 Nov 2;294(5544):1048-52. doi: 10.1126/science.1062856.
    Lyon MR, Kapoor MP, Juneja LR. The effects of L-theanine (Suntheanine(R)) on objective sleep quality in boys with attention deficit hyperactivity disorder (ADHD): a randomized, double-blind, placebo-controlled clinical trial. Altern Med Rev. 2011 Dec;16(4):348-54.
    Lolli L, Bonanno D, Lopez E, Di Salvo V. Night-to-night variability of objective sleep outcomes in youth Middle Eastern football players. Sleep Med. 2024 May;117:193-200. doi: 10.1016/j.sleep.2024.03.023. Epub 2024 Mar 19.
    Lolli L, Cardinale M, Lopez E, Maasar MF, Marthinussen J, Bonanno D, Gregson W, Di Salvo V. An objective description of routine sleep habits in elite youth football players from the Middle-East. Sleep Med. 2021 Apr;80:96-99. doi: 10.1016/j.sleep.2021.01.029. Epub 2021 Jan 23.
    Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019 Jan;20(1):49-65. doi: 10.1038/s41583-018-0088-y.
    Langan-Evans C, Hearris MA, Gallagher C, Long S, Thomas C, Moss AD, Cheung W, Howatson G, Morton JP. Nutritional Modulation of Sleep Latency, Duration, and Efficiency: A Randomized, Repeated-Measures, Double-Blind Deception Study. Med Sci Sports Exerc. 2023 Feb 1;55(2):289-300. doi: 10.1249/MSS.0000000000003040. Epub 2022 Sep 9.
    Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E, Viechtbauer W, Simmonds M. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019 Mar;10(1):83-98. doi: 10.1002/jrsm.1316. Epub 2018 Sep 6.
    Lakens D. Sample size justification. Collabra Psychol. 2022;8(1):33267.
    Knutson KL, Rathouz PJ, Yan LL, Liu K, Lauderdale DS. Intra-individual daily and yearly variability in actigraphically recorded sleep measures: the CARDIA study. Sleep. 2007 Jun;30(6):793-6. doi: 10.1093/sleep/30.6.793.
    Johnston RD, Hewitt A, Duthie G. Validity of Real-Time Ultra-wideband Global Navigation Satellite System Data Generated by a Wearable Microtechnology Unit. J Strength Cond Res. 2020 Jul;34(7):2071-2075. doi: 10.1519/JSC.0000000000003059.
    IntHout J, Ioannidis JP, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open. 2016 Jul 12;6(7):e010247. doi: 10.1136/bmjopen-2015-010247.
    IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014 Feb 18;14:25. doi: 10.1186/1471-2288-14-25.
    Hannon MP, Parker LJF, Carney DJ, McKeown J, Speakman JR, Hambly C, Drust B, Unnithan VB, Close GL, Morton JP. Energy Requirements of Male Academy Soccer Players from the English Premier League. Med Sci Sports Exerc. 2021 Jan;53(1):200-210. doi: 10.1249/MSS.0000000000002443.
    Gonzalez JT, Lolli L, Veasey RC, Rumbold PLS, Betts JA, Atkinson G, Stevenson EJ. Are there interindividual differences in the reactive hypoglycaemia response to breakfast? A replicate crossover trial. Eur J Nutr. 2024 Dec;63(8):2897-2909. doi: 10.1007/s00394-024-03467-y. Epub 2024 Sep 4.
    Goltz FR, Thackray AE, Atkinson G, Lolli L, King JA, Dorling JL, Dowejko M, Mastana S, Stensel DJ. True Interindividual Variability Exists in Postprandial Appetite Responses in Healthy Men But Is Not Moderated by the FTO Genotype. J Nutr. 2019 Jul 1;149(7):1159-1169. doi: 10.1093/jn/nxz062.
    Goltz FR, Thackray AE, King JA, Dorling JL, Atkinson G, Stensel DJ. Interindividual Responses of Appetite to Acute Exercise: A Replicated Crossover Study. Med Sci Sports Exerc. 2018 Apr;50(4):758-768. doi: 10.1249/MSS.0000000000001504.
    Garlick PJ. The nature of human hazards associated with excessive intake of amino acids. J Nutr. 2004 Jun;134(6 Suppl):1633S-1639S; discussion 1664S-1666S, 1667S-1672S. doi: 10.1093/jn/134.6.1633S.
    Fox JL, Scanlan AT, Stanton R, Sargent C. Insufficient Sleep in Young Athletes? Causes, Consequences, and Potential Treatments. Sports Med. 2020 Mar;50(3):461-470. doi: 10.1007/s40279-019-01220-8.
    Fernstrom JD. Effects and side effects associated with the non-nutritional use of tryptophan by humans. J Nutr. 2012 Dec;142(12):2236S-2244S. doi: 10.3945/jn.111.157065. Epub 2012 Oct 17.
    Elango R. Tolerable Upper Intake Level for Individual Amino Acids in Humans: A Narrative Review of Recent Clinical Studies. Adv Nutr. 2023 Jul;14(4):885-894. doi: 10.1016/j.advnut.2023.04.004. Epub 2023 Apr 14.
    Dwan K, Li T, Altman DG, Elbourne D. CONSORT 2010 statement: extension to randomised crossover trials. BMJ. 2019 Jul 31;366:l4378. doi: 10.1136/bmj.l4378.
    Di Salvo V, Gregson W, Atkinson G, Tordoff P, Drust B. Analysis of high intensity activity in Premier League soccer. Int J Sports Med. 2009 Mar;30(3):205-12. doi: 10.1055/s-0028-1105950. Epub 2009 Feb 12.
    Coates S, Taubel J, Lorch U. Practical risk management in early phase clinical trials. Eur J Clin Pharmacol. 2019 Apr;75(4):483-496. doi: 10.1007/s00228-018-02607-8. Epub 2018 Dec 19.
    Cynober L, Bier DM, Kadowaki M, Morris SM Jr, Elango R, Smriga M. Proposals for Upper Limits of Safe Intake for Arginine and Tryptophan in Young Adults and an Upper Limit of Safe Intake for Leucine in the Elderly. J Nutr. 2016 Dec;146(12):2652S-2654S. doi: 10.3945/jn.115.228478. Epub 2016 Nov 9.
    de Zambotti M, Cellini N, Goldstone A, Colrain IM, Baker FC. Wearable Sleep Technology in Clinical and Research Settings. Med Sci Sports Exerc. 2019 Jul;51(7):1538-1557. doi: 10.1249/MSS.0000000000001947.
    Covassin N, Singh P, McCrady-Spitzer SK, St Louis EK, Calvin AD, Levine JA, Somers VK. Effects of Experimental Sleep Restriction on Energy Intake, Energy Expenditure, and Visceral Obesity. J Am Coll Cardiol. 2022 Apr 5;79(13):1254-1265. doi: 10.1016/j.jacc.2022.01.038.
    Chatters R, Hawksworth O, Julious S, Cook A. The development of a set of key points to aid clinicians and researchers in designing and conducting n-of-1 trials. Trials. 2024 Jul 11;25(1):473. doi: 10.1186/s13063-024-08261-z.
    Bruni O, Ferri R, Miano S, Verrillo E. L -5-Hydroxytryptophan treatment of sleep terrors in children. Eur J Pediatr. 2004 Jul;163(7):402-7. doi: 10.1007/s00431-004-1444-7. Epub 2004 May 14.
    Borenstein M. Avoiding common mistakes in meta-analysis: Understanding the distinct roles of Q, I-squared, tau-squared, and the prediction interval in reporting heterogeneity. Res Synth Methods. 2024 Mar;15(2):354-368. doi: 10.1002/jrsm.1678. Epub 2023 Nov 8.
    Barrett JR, Tracy DK, Giaroli G. To sleep or not to sleep: a systematic review of the literature of pharmacological treatments of insomnia in children and adolescents with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2013 Dec;23(10):640-7. doi: 10.1089/cap.2013.0059. Epub 2013 Nov 21.
    Bacchetti P. Current sample size conventions: flaws, harms, and alternatives. BMC Med. 2010 Mar 22;8:17. doi: 10.1186/1741-7015-8-17.
    Atkinson G, Batterham AM. True and false interindividual differences in the physiological response to an intervention. Exp Physiol. 2015 Jun;100(6):577-88. doi: 10.1113/EP085070. Epub 2015 May 13.
    Atkinson G, Williamson P, Batterham AM. Issues in the determination of 'responders' and 'non-responders' in physiological research. Exp Physiol. 2019 Aug;104(8):1215-1225. doi: 10.1113/EP087712. Epub 2019 Jun 9.