Výsledky vyhledávání - "((\"Parallel algorithms AND applications\") OR (\"Parallel algorithms AND publications\"))"

Upřesnit hledání
  1. 1

    Přispěvatelé: University/Department: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors

    Thesis Advisors: Labarta Mancho, Jesús

    Zdroj: TDX (Tesis Doctorals en Xarxa)

    Popis souboru: application/pdf

  2. 2

    Zdroj: Publications of the Astronomical Society of the Pacific, 2010 . 122(896), 1236-1245.

    Relation: Online material: color figure

  3. 3
  4. 4
  5. 5
  6. 6

    Přispěvatelé: Ding, Chris

    Zdroj: IEEE Transactions on Parallel and Distributed Systems; 12; 3; Other Information: Journal Publication Date: March 2001; PBD: 31 Oct 2000

    Popis souboru: Medium: X; Size: vp.

    Přístupová URL adresa: http://www.osti.gov/scitech/biblio/782503

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Zdroj: Modeling and Analysis of Information Systems; Том 30, № 2 (2023); 128-139 ; Моделирование и анализ информационных систем; Том 30, № 2 (2023); 128-139 ; 2313-5417 ; 1818-1015

    Popis souboru: application/pdf

    Relation: https://www.mais-journal.ru/jour/article/view/1775/1365; M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness,” Siam Review, vol. 24, no. 1, pp. 90–91, 1982.; R. Hoffmann, C. McCreesh, and C. Reilly, “Between Subgraph Isomorphism and Maximum Common Subgraph,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2017, vol. 31, no. 1, pp. 3907–3914.; S. N. Ndiaye and C. Solnon, “CP Models for Maximum Common Subgraph Problems,” Lecture Notes in Computer Science, vol. 6876, pp. 637–644, 2011.; D. Conte, P. Foggia, and M. Vento, “Challenging complexity of maximum common subgraph detection algorithms: A performance analysis of three algorithms on a wide database of graphs,” Journal of Graph Algorithms and Applications, vol. 11, no. 1, pp. 99–143, 2007.; J. J. McGregor, “Backtrack search algorithms and the maximal common sub-graph problem,” Software: Practice and Experience, vol. 12, no. 1, pp. 23–34, 1982.; L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An Improved Algorithm for Matching Large Graphs,” in Proc. of the 3rd IAPR-TC-15 InternationalWorkshop on Graph-based Representations, 2001, pp. 149–159.; P. J. Durand, R. Pasari, J. W. Baker, and C.-che Tsai, “An efficient algorithm for similarity analysis of molecules,” Internet Journal of Chemistry, vol. 2, no. 17, pp. 1–16, 1999.; C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected graph,” Communications of the ACM, vol. 16, no. 9, pp. 575–577, 1973.; A. Marcelli, S. Quer, and G. Squillero, “The Maximum Common Subgraph Problem: A Portfolio Approach.” 2019, [Online]. Available: http://arxiv.org/abs/1908.06418.; V. V. Vasilchikov, “Parallel algorithm for solving the graph isomorphism problem,” Modeling and analysis of information systems, vol. 27, no. 1, pp. 86–94, 2020.; V. V. Vasilchikov, “Recursive-Parallel Algorithm for Solving the Graph-Subgraph Isomorphism Problem,” Modeling and analysis of information systems, vol. 29, no. 1, pp. 30–43, 2022.; V. V. Vasilchikov, Sredstva parallelnogo programmirovaniya dlya vychislitelnykh sistem s dinamicheskoy balansirovkoy zagruzki. YarGU, Yaroslavl, 2001.; V. V. Vasilchikov, “On the recursive-parallel programming for the .NET framework,” Automatic Control and Computer Sciences, vol. 48, pp. 575–580, 2014.

  17. 17
  18. 18
  19. 19
  20. 20