Výsledky vyhledávání - "$L^{\infty}$-norm computation"

  • Zobrazuji výsledky 1 - 10 z 10
Upřesnit hledání
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Alternate Title: MORpH: Modellreduktion linearer port-Hamiltonscher Systeme in MATLAB. (German)

    Zdroj: Automatisierungstechnik; Jun2023, Vol. 71 Issue 6, p476-489, 14p

  9. 9
  10. 10

    Popis souboru: application/pdf

    Relation: mr:MR4927778; zbl:Zbl 08072748; reference:[1] Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.: A greedy subspace method for computing the $\mathcal{L}_\infty$-norm.PAMM, Proc. Appl. Math. Mech. 17 (2017), 751-752. 10.1002/pamm.201710343; reference:[2] Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.: Large-scale computation of $\mathcal{L}_\infty$-norms by a greedy subspace method.SIAM J. Matrix Anal. Appl. 38 (2017), 1496-1516. Zbl 1379.65020, MR 3735291, 10.1137/16M1086200; reference:[3] Antoulas, A. C.: Approximation of Large-Scale Dynamical Systems.Advances in Design and Control 6. SIAM, Philadelphia (2005). Zbl 1112.93002, MR 2155615, 10.1137/1.9780898718713; reference:[4] Antoulas, A. C., Beattie, C. A., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems.Efficient Modeling and Control of Large-Scale Systems Springer, New York (2010), 3-58. Zbl 1229.65103, MR 0593759, 10.1007/978-1-4419-5757-3_1; reference:[5] Antoulas, A. C., Beattie, C. A., Güğercin, S.: Interpolatory Methods for Model Reduction.Computational Science & Engineering 21. SIAM, Philadelphia (2020). Zbl 1553.93002, MR 4072177, 10.1137/1.9781611976083; reference:[6] Antoulas, A. C., Sorensen, D. C., Gugercin, S.: A survey of model reduction methods for large-scale systems.Structured Matrices in Mathematics, Computer Science, and Engineering. I Contemporary Mathematcs 280. AMS, Providence (2001), 193-219. Zbl 1048.93014, MR 1850408, 10.1090/conm/280; reference:[7] Baur, U., Beattie, C. A., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction.SIAM J. Sci. Comput. 33 (2011), 2489-2518. Zbl 1254.93032, MR 2861634, 10.1137/090776925; reference:[8] Beattie, C., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction.Syst. Control Lett. 58 (2009), 225-232. Zbl 1159.93317, MR 2494198, 10.1016/j.sysconle.2008.10.016; reference:[9] Benner, P., Breiten, T., Damm, T.: Generalised tangential interpolation for model reduction of discrete-time MIMO bilinear systems.Int. J. Control 84 (2011), 1398-1407. Zbl 1230.93010, MR 2830869, 10.1080/00207179.2011.601761; reference:[10] Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems.SIAM Rev. 57 (2015), 483-531. Zbl 1339.37089, MR 3419868, 10.1137/130932715; reference:[11] Benner, P., Kürschner, P., Tomljanović, Z., Truhar, N.: Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm.ZAMM, Z. Angew. Math. Mech. 96 (2016), 604-619. Zbl 1538.74119, MR 3502967, 10.1002/zamm.201400158; reference:[12] Benner, P., Mehrmann, V., (eds.), D. C. Sorensen: Dimension Reduction of Large-Scale Systems.Lecture Notes in Computational Science and Engineering 45. Springer, Berlin (2005). Zbl 1066.65004, MR 2516498, 10.1007/3-540-27909-1; reference:[13] Benner, P., Sima, V., Voigt, M.: $\mathcal{L}_\infty$-norm computation for continuous-time descriptor systems using structured matrix pencils.IEEE Trans. Automat. Control 57 (2012), 233-238. Zbl 1369.93174, MR 2917665, 10.1109/TAC.2011.2161833; reference:[14] Boyd, S., Balakrishnan, V.: A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its {$\mathcal{L}_{\infty}$}-norm.Syst. Control Lett. 15 (1990), 1-7. Zbl 0704.93014, MR 1065342, 10.1016/0167-6911(90)90037-U; reference:[15] Bruinsma, N. A., Steinbuch, M.: A fast algorithm to compute the $H_{\infty}$-norm of a transfer function matrix.Syst. Control Lett. 14 (1990), 287-293. Zbl 0699.93021, MR 1052637, 10.1016/0167-6911(90)90049-Z; reference:[16] Dileep, G.: A survey on smart grid technologies and applications.Renewable Energy 146 (2020), 2589-2625. 10.1016/j.renene.2019.08.092; reference:[17] Gallivan, K., Vandendorpe, A., Dooren, P. Van: Model reduction of MIMO systems via tangential interpolation.SIAM J. Matrix Anal. Appl. 26 (2004), 328-349. Zbl 1078.41016, MR 2124150, 10.1137/S0895479803423925; reference:[18] Gugercin, S., Antoulas, A. C., Beattie, C.: $\mathcal{H}_2$ model reduction for large-scale linear dynamical systems.SIAM J. Matrix Anal. Appl. 30 (2008), 609-638. Zbl 1159.93318, MR 2421462, 10.1137/060666123; reference:[19] Haddad, W. M., Hui, Q., Lee, J.: Network Information Systems: A Dynamical Systems Approach.Other Titles in Applied Mathematics 191. SIAM, Philadelphia (2023). Zbl 1520.93002, MR 4625045, 10.1137/1.9781611977547; reference:[20] Hagberg, A. A., Schult, D. A., Swart, P. J.: Exploring network structure, dynamics, and function using networkX.Proceedings of the 7th Python in Science Conference (SciPy2008) SciPy, Pasadena (2008), 11-16.; reference:[21] Leinhardt, S.: Social Networks: A Developing Paradigm.Academic Press, New York (1977). 10.1016/C2013-0-11063-X; reference:[22] Nakić, I., Tolić, D., Palunko, I., Tomljanović, Z.: Numerically efficient agents-to-group $H_{\infty}$ analysis.IFAC-PapersOnLine 55 (2022), 199-204. 10.1016/j.ifacol.2022.09.095; reference:[23] Nakić, I., Tolić, D., Tomljanović, Z., Palunko, I.: Numerically efficient ${H}_{\infty}$ analysis of cooperative multi-agent systems.J. Franklin Inst. 359 (2022), 9110-9128. Zbl 1501.93012, MR 4498292, 10.1016/j.jfranklin.2022.09.013; reference:[24] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays.IEEE Trans. Autom. Control 49 (2004), 1520-1533. Zbl 1365.93301, MR 2086916, 10.1109/TAC.2004.834113; reference:[25] Peng, S., Zhou, Y., Cao, L., Yu, S., Niu, J., Jia, W.: Influence analysis in social networks: A survey.J. Network Comput. Appl. 106 (2018), 17-32. 10.1016/j.jnca.2018.01.005; reference:[26] Ren, W., Beard, R. W.: Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications.Communications and Control Engineering. Springer, London (2008). Zbl 1144.93002, 10.1007/978-1-84800-015-5; reference:[27] Rommes, J., Martins, N.: Efficient computation of transfer function dominant poles using subspace acceleration.IEEE Trans. Power Syst. 21 (2006), 1218-1226. 10.1109/TPWRS.2006.876671; reference:[28] Rommes, J., Sleijpen, G. L. G.: Convergence of the dominant pole algorithm and Rayleigh quotient iteration.SIAM J. Matrix Anal. Appl. 30 (2008), 346-363. Zbl 1165.65016, MR 2399584, 10.1137/060671401; reference:[29] Sorrentino, F., Tolić, D., Fierro, R., Picozzi, S., Gordon, J. R., Mammoli, A.: Stability analysis of a model for the market dynamics of a smart grid.52nd IEEE Conference on Decision and Control IEEE, Los Alamitos (2013), 4964-4970. 10.1109/CDC.2013.6760668; reference:[30] Tolić, D.: $\mathcal{L}_p$-stability with respect to sets applied towards self-triggered communication for single-integrator consensus.52nd IEEE Conference on Decision and Control IEEE, Los Alamitos (2013), 3409-3414. 10.1109/CDC.2013.6760405; reference:[31] Tolić, D., Jeličić, V., Bilas, V.: Resource management in cooperative multi-agent networks through self-triggering.IET Control Theory Appl. 9 (2015), 915-928. MR 3364336, 10.1049/iet-cta.2014.0576; reference:[32] Tolić, D., Palunko, I., Ivanović, A., Car, M., Bogdan, S.: Multi-agent control in degraded communication environments.2015 European Control Conference (ECC) IEEE, Los Alamitos (2015), 404-409. MR 3364036, 10.1109/ECC.2015.7330577; reference:[33] Tomljanović, Z., Voigt, M.: Semi-active $\mathcal{H}_\infty$ damping optimization by adaptive interpolation.Numer. Linear Algebra Appl. 27 (2020), Article ID e2300, 17 pages. Zbl 1463.93076, MR 4157212, 10.1002/nla.2300; reference:[34] Wang, Y., Garcia, E., Casbeer, D., (eds.), F. Zhang: Cooperative Control of Multi-Agent Systems: Theory and Applications.John Wiley & Sons, Hoboken (2017). Zbl 1406.93005, MR 3618878, 10.1002/9781119266235; reference:[35] Yue, Y., Meerbergen, K.: Accelerating optimization of parametric linear systems by model order reduction.SIAM J. Optim. 23 (2013), 1344-1370. Zbl 1273.35279, MR 3071415, 10.1137/120869171; reference:[36] Zhou, K., Doyle, J. C., Glover, K.: Robust and Optimal Control.Prentice Hall, Upper Saddle River (1996). Zbl 0999.49500